# Scope and limitation of the [1,2]-phenylsulfanyl (PhS) migration in the synthesis of tetrahydrofurans and tetrahydropyrans from common triol precursors 

David House, ${ }^{* a}$ Fraser Kerr ${ }^{b}$ and Stuart Warren * ${ }^{*}$
${ }^{a}$ Dyson Perrins Laboratory, South Parks Road, Oxford, UK OX1 3QY.
E-mail: sw134@cam.ac.uk
${ }^{\text {b }}$ AstraZeneca, Hurdsfield Industrial Estate, Macclesfield, Cheshire, UK SK10 2NA
${ }^{c}$ University Chemical Laboratory, Lensfield Road, Cambridge, UK CB2 IEW
Received (in Cambridge, UK) 3rd September 2002, Accepted 2nd October 2002
First published as an Advance Article on the web 7th November 2002

Triols containing three secondary hydroxy groups were rearranged using either (i) toluene-p-sulfonic acid or (ii) trimethyl orthoacetate-pyridinium toluene- $p$-sulfonate followed by toluene-p-sulfonic acid

In previous papers ${ }^{1}$ we have demonstrated how enantiomerically enriched $2,4,5$-triols (e.g. 2) could be converted in a single step to THFs (e.g. 1) (thermodynamic control) or in two-steps to THPs (e.g. 3) (kinetic control-equilibration sequence) (Scheme 1). In this final paper on the subject of competition


Scheme 1 Reagents: i, TsOH, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 40{ }^{\circ} \mathrm{C}$; ii, $(\mathrm{MeO})_{3} \mathrm{CMe}$, $\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}^{+} \mathrm{TsO}^{-}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt.
experiments between THF and THP formation, we report in full ${ }^{2}$ our findings on the effect of replacing the primary hydroxy at C-5 in triol 2 with a secondary alcohol. Obviously the introduction of a third stereogenic centre increases stereochemical complexity; for each series of compounds we looked at there were four possible diastereoisomers to investigate.

Given that we had previously used Sharpless asymmetric dihydroxylation ${ }^{3}$ (AD) as a route to enantiomerically enriched triols we were keen to exploit this reaction further. In particular, we wished to prepare the styrene 4 (Fig. 1), as styrenes are well


4
Fig. 1 Styrene target molecule 4.
known to be amongst the best substrates for the AD reaction in terms of the high levels of enantioselectivity that may be obtained. Initial attempts to prepare this compound focused on allylic metal chemistry but were rather unsuccessful (Scheme 2). Allylsilane 5 was prepared in low yield from benzyltrimethylsilane by radical bromination with NBS $^{4}$ followed by a nickel(II) catalysed Kharasch coupling. ${ }^{5}$ Unfortunately the Lewis acid conditions needed to promote addition of the allylsilane ${ }^{6}$ to aldehyde 6 meant that only tiny amounts of the target styrene could be isolated and so an alternative route was sought.

Eventually we settled on preparing styrene 4 from the homoallylic alcohol 7, reported previously, ${ }^{1}$ by a Heck reaction with iodobenzene (Scheme 3). Oxidation of alcohol 4 to give the homoallylic ketone $\mathbf{8}$ proved troublesome with PCC, a mixture


Scheme 2 Reagents: i, N -bromosuccinimide, $\mathrm{CCl}_{4}$, reflux, 10 h ; ii, Mg , $\mathrm{Et}_{2} \mathrm{O}, 0{ }^{\circ} \mathrm{C}$; iii, $\mathrm{Ni}($ dppe $) \mathrm{Cl}_{2}$, vinyl bromide, rt, 48 h ; iv, allylsilane 5, $\mathrm{TiCl}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 72 \mathrm{~h}$.


Scheme 3 Reagents: i, PhI, $5 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}, 10 \mathrm{~mol} \% \mathrm{Ph}_{3} \mathrm{P}, \mathrm{Et}_{3} \mathrm{~N}$, $\mathrm{MeCN}, 80^{\circ} \mathrm{C}, 24 \mathrm{~h}$; ii, PDC, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt; iii, AD-mix- $\beta$, $\mathrm{MeSO}_{2} \mathrm{NH}_{2}$, $\mathrm{Bu}^{\mathrm{t}} \mathrm{OH}-\mathrm{H}_{2} \mathrm{O}$, rt; iv, $\mathrm{Me}_{4} \mathrm{~N}^{+} \mathrm{BH}(\mathrm{OAc})_{3}{ }^{-}$, $\mathrm{AcOH}-\mathrm{MeCN},-20^{\circ} \mathrm{C}, 7$ days; $\mathrm{v}, \mathrm{Et}_{2} \mathrm{BOMe}, \mathrm{THF}-\mathrm{MeOH},-78^{\circ} \mathrm{C}$ then $\mathrm{NaBH}_{4}$.
of compounds being obtained which were attributed to conjugation of the alkene with the carbonyl group. Presumably this results from the stabilisation of the extended enol by the


Scheme 4 Reagents: i, LDA, THF, $-78{ }^{\circ} \mathrm{C}$; ii, aldehyde 16; iii, $\mathrm{Et}_{2} \mathrm{BOMe}, \mathrm{THF}-\mathrm{MeOH},-78{ }^{\circ} \mathrm{C}$ then $\mathrm{NaBH}_{4}$; iv, $\mathrm{Me}_{4} \mathrm{~N}^{+} \mathrm{BH}(\mathrm{OAc})_{3}{ }^{-}, \mathrm{AcOH}-$ $\mathrm{MeCN},-20^{\circ} \mathrm{C}, 7$ days; $\mathrm{v}, \mathrm{Bu}^{\mathrm{n}}{ }_{4} \mathrm{~N}^{+} \mathrm{F}^{-}$, THF, rt.
benzene ring. We were able to overcome this problem by switching to the less acidic reagent PDC. ${ }^{7}$ The styrene $\mathbf{8}$ was dihydroxylated using the commercially available AD-mix $-\beta$ to give the dihydroxyketone 9 in high yield ( $92 \%$ ) and with excellent enantioselectivity ( $>98 \%$ ee) as predicted. Finally the triols $\mathbf{1 0}$ and $\mathbf{1 1}$ were obtained by the same method as used previously, ${ }^{1}$ i.e. diastereoselective reduction of the $\beta$-hydroxyketone 9 (Scheme 3). ${ }^{8,9}$
A second series of triols $\mathbf{1 2} \mathbf{- 1 5}$ were prepared using aldol chemistry (Scheme 4). A short sequence of reactions starting from methyl lactate allowed us to prepare the silyl protected aldehyde 16, a sensitive compound which was generally not purified before the aldol reaction. Unfortunately the aldol reaction of ketone $\mathbf{1 7}$ with aldehyde $\mathbf{1 6}$ gave poor diastereoselectivity and a difficult separation of the aldol diastereoisomers 18 and 19 by preparative HPLC was necessary. Similarly, Heathcock observed a low level of Felkin-Anh control ${ }^{10}$ in the aldol reaction of the lithium enolate of pinacolone with 2-methoxypropanal (58:42 selectivity for the isomer predicted from the Felkin-Anh model). ${ }^{11}$ The advantage of this poor selectivity was that it made both diastereoisomers immediately available and that it was possible to prepare all four diastereoisomers of the silyl-protected triol target molecules (20-23) by means of 1,3-stereocontrolled reductions (Scheme 4). The stereochemistry of the aldol products was confirmed by means of an X-ray crystal structure $\dagger$ (Fig. 2, Table 1) since one of the two diastereoisomers (anti-18) crystallised after the HPLC separation.
With the knowledge we had gained from the first set of substrates that we investigated, ${ }^{1}$ we used long reaction times for the toluene- $p$-sulfonic acid catalysed rearrangement to ensure equilibrium was established. The triols in the lactic acid series (i.e. triols 12-15) all rearranged ${ }^{12}$ to give the THFs (24-27, respectively) as the major product (Scheme 5). We were particularly interested to establish the outcome of rearranging the ${ }^{2,4}$ anti, ${ }^{4,5}$ anti triol 13, since the THP 28 derived from this triol would have the maximum number of equatorial substituents (Fig. 3). Despite this 'favourable' arrangement of substituents in the THP product, the THF was still the major product, though THP 28 did account for $17 \%$ of the equilibrium.
$\dagger$ CCDC reference number 192685. See http://www.rsc.org/suppdata/ p1/b2/b208558e/ for crystallographic files in .cif or other electronic format.

Table 1 Summary of crystal data, data collection, structure solution and refinement data for compound 18

| Empirical formula | $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{SSi}$ |
| :--- | :--- |
| Formula weight $(M)$ | $382.62 \mathrm{~g} \mathrm{~mol}^{-1}$ |
| Crystal system | Triclinic |
| Unit cell dimensions | $a=10.820(3) \AA a=91.37(3)^{\circ}$ |
|  | $b=13.543(4) \AA \beta=97.96(2)^{\circ}$ |
|  | $c=7.720(2) \AA \gamma=87.39(2)^{\circ}$ |
| Volume | $1119.0(5) \AA^{3}$ |
| Temperature | $230(2) \mathrm{K}$ |
| Space group | $P \overline{1}$ |
| $Z$ | 2 |
| Absorption coefficient $(\mu)$ | $0.213 \mathrm{~mm}^{-1}$ |
| Reflections collected | 6366 |
| Independent reflections | $3924\left(R_{\text {int }}=0.0415\right)$ |
| Final $R$ indices $[I>2 \sigma(I)]$ | $R 1=0.0620, \mathrm{w} R 2=0.1102$ |
| $R$ indices (all data) | $R 1=0.1327, \mathrm{w} R 2=0.1359$ |



Fig. 2 X-Ray crystal structure of aldol product anti-18 derived from methyl lactate.



28
Fig. 3 THP 28, formed from the rearrangement of triol 13, contains the maximum number of equatorial substituents.

The rearrangement of the triols $\mathbf{1 0}$ and $\mathbf{1 1}$ required careful handling (presumably due to the benzylic hydroxy group). The ${ }^{2,4}$ anti, ${ }^{4,5}$ syn triol $\mathbf{1 0}$ rearranged exclusively to THF 29 after


12


24; $89 \%$


25; $75 \%$


26; $93 \%$

Scheme 5 Reagents: i, $\mathrm{TsOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 40^{\circ} \mathrm{C}$.



Scheme 6 Reagents: i, $\mathrm{TsOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 40^{\circ} \mathrm{C}$; ii, $\mathrm{TsOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt.
being heated to reflux in dichloromethane for 24 hours (Scheme 6). The ${ }^{2,4} \operatorname{syn},{ }^{4,5} \operatorname{syn}$ triol 11, however, had to be rearranged at room temperature (3 days) to avoid decomposition. Again, the THF $\mathbf{3 0}$ was the only isolated product.

These reactions show that for the twelve 2,4,5-triols that have been investigated, six with a primary hydroxy at C-5 and six with a secondary hydroxy at C-5, the THF is always more stable than the alternative THP even when three groups can be equatorial on the THP. We believe this to be a consequence of the gem-disubstituted migration origin (the degree of substitution being equal for both ring sizes). In the THPs one of the $\mathrm{C}-\mathrm{C}$ bonds must necessarily be axial; presumably the 1,3diaxial interactions are too severe and the flatter THF rings are preferred. It is well known from sugar chemistry that selective 1,2- or 1,3-diol protection can be achieved either by formation of benzylidene acetals or isopropylidene ketals. For example, Lavallé showed that selective 1,2-protection of the triol 31 could be achieved by treatment with catalytic toluene- $p$-sulfonic acid in acetone. ${ }^{13}$ The 5-ring ketal 32 was formed in preference to the 6 -ring ketal 33 by a factor of $9: 1$. In the 6 -ring ketal two methyl groups are forced to adopt axial positions (Scheme 7).


Scheme 7 Reagents: i, TsOH, acetone, rt.
We have calculated ground state energies for two hypothetical heterocycles 34 and 35, in which the gem-dimethyl substitution has been removed (Fig. 4). ${ }^{14}$ For the anti-THF 34 the energies were in the range -93.8 to $-91.2 \mathrm{kcal} \mathrm{mol}^{-1}$ and for the synTHP $35-93.5$ to $-91.2 \mathrm{kcal} \mathrm{mol}^{-1}$. The similar energy ranges for the two heterocycles support the theory that gem-dimethyl substitution raises the energy of THPs relative to THFs.

We previously published an orthoester-triggered rearrangement in which the C-4 hydroxy nucleophile is protected and


34


35

Fig. 4 Hypothetical rearrangement products: THF 34 and THP 35 lack a tertiary migration origin.
the leaving hydroxy at C-2 is activated in a single step, leaving the hydroxy at C-5 free to cyclise. ${ }^{1 \mathrm{~b}}$ Although this led to mixtures of unrearranged ${ }^{12}$ THFs and rearranged THPs (a consequence of kinetic control) these products could be equilibrated with toluene- $p$-sulfonic acid in dichloromethane, converting the unrearranged THFs to THPs.

Reactions of the triols in the lactic acid series turned out to be very substrate dependent. Rearrangement of the ${ }^{2,4}$ syn $^{4,5}$ anti triol 12 under kinetic conditions gave the unrearranged THF 36 as the major product (Scheme 8). Equilibration with toluene-


Scheme 8 Reagents: i, $(\mathrm{MeO})_{3} \mathrm{CMe}, \mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}^{+} \cdot \mathrm{TsO}^{-}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt; ii, $\mathrm{TsOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 40^{\circ} \mathrm{C}$.
p-sulfonic acid gave only a $74: 26$ mixture of the rearranged THP 37 and unrearranged THF 36. The inference here could be that it is unfavourable for the sulfanyl group to occupy an axial position, indeed sufficiently unfavourable that it can partly overcome the driving force for 'downhill' migration. ${ }^{15}$ The ${ }^{2,4}$ anti, ${ }^{4,5}$ anti-triol 13 behaved quite differently; after equilibration of an initial THF-THP mixture the only product identified was the THP 38, with methyl, acetoxy and phenylsulfanyl groups all occupying equatorial positions (Scheme 8). The ${ }^{2,4} \operatorname{syn},{ }^{4,5}$ syn-triol 14 gave, after the two-step reaction sequence, the THP 39 with an axial acetate (the alternative THF 40 contains an unfavourable 2,3-syn relationship) (Scheme 8). Finally, in this series of compounds, the ${ }^{2,4}$ anti, ${ }^{4,5}$ syn-triol 15 gave a single product after treatment with trimethyl orthoacetate and PPTS: the bicyclic orthoester 41. Attempts to repeat the reaction at higher temperatures, or with longer reaction times, led only to decomposition products that were not characterised. It is interesting to note the stabilising effect of an exo-methyl group on these compounds. When triol 13 (with 2,4-anti stereochemistry) was reacted with the same reagent system no bicyclic orthoester intermediate was observed; presumably an endo-methyl group here destabilises the orthoester intermediate (if the corresponding orthoester forms at all).

The triols 10 and 11, each containing a benzylic hydroxy group, behaved similarly to their analogues in the lactic acid


Scheme 9 Reagents: i, $(\mathrm{MeO})_{3} \mathrm{CMe}, \mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}^{+} \cdot \mathrm{TsO}^{-}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt; ii, $\mathrm{TsOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt.
series. Triol 11 was converted into the THP 43, bearing an axial acetate, and triol $\mathbf{1 0}$ gave only the bicyclic orthoester $\mathbf{4 2}$ which was not successfully transformed into the target heterocycles (Scheme 9).

In summary we have demonstrated that for the general class of 2,4,5-triols under investigation THFs are formed as thermodynamic products when toluene-p-sulfonic acid is used as the catalyst for rearrangement regardless of the relative stereochemistry present in the triol. This is attributed to the 1,3-diaxial interactions which exist in the THPs when one of the $\mathrm{C}-\mathrm{C}$ bonds of the tertiary migration origin is forced to enter an axial environment. The orthoester rearrangement has been shown to be general apart from triols with ${ }^{2,4}$ anti, ${ }^{4,5} \operatorname{syn}$ stereochemistry in which case the intermediate bicyclic orthoester is over-stabilised by a 6-exo substituent. The subsequent equilibration of THF-THP product mixtures gives THPs as exclusive products in all cases except for triol precursors with ${ }^{2,4} \operatorname{syn},{ }^{4,5}$ anti stereochemistry where the phenylsulfanyl group would be forced into an axial position on the THP ring.

## Experimental

All solvents were distilled before use. Tetrahydrofuran and diethyl ether were freshly distilled from lithium aluminium hydride whilst dichloromethane and acetonitrile were freshly distilled from calcium hydride. Triphenylmethane was used as an indicator for tetrahydrofuran. Diisopropylamine was dried by distillation from calcium hydride and was stored over $4 \AA$ molecular sieves. Triethylamine was dried in the same way but stored over calcium hydride granules. $n$-Butyllithium was titrated against diphenylacetic acid before use. All non-aqueous reactions were carried out under argon using oven-dried glassware.

Flash column chromatography was carried out using Merck Kieselgel 60 (230-400 mesh). Thin layer chromatography was performed on commercially available pre-coated plates (Merck silica Kieselgel $60 \mathrm{~F}_{254}$ ). Preparative HPLC was performed using a Zorbax SIL prepacked silica column ( 21.2 mm id $\times 25 \mathrm{~cm}$ ) with a Gilson model 303 pump and a Cecil Instruments CE 212A UV detection system measuring the absorbance at 254 nm. Analytical HPLC was performed using either a Zorbax RX-C8 prepacked reverse phase silica column or a Daicel Chiralpak AD column with a Spectra-Physics SP8800 pump, a Spectra-Physics SP8450 UV detection system and a ChromJet single channel integrator.

Proton and carbon NMR spectra were recorded on Bruker DPX 250, AM 400, DRX 400 or DRX 500 Fourier transform spectrometers using an internal deuterium lock. Chemical shifts are quoted in parts per million ( ppm ) downfield of tetramethylsilane. Coupling constants $J$ are quoted in Hz and are not rationalised. The symbol ${ }^{*}$ after the proton NMR chemical shift indicates that the signal disappears after a $\mathrm{D}_{2} \mathrm{O}$ "shake". Carbon NMR spectra were recorded with broad band proton decoupling and Attached Proton Test. The symbols ${ }^{+}$and after the carbon NMR chemical shift indicate odd and even numbers of attached protons respectively.

Melting points were measured on a Stuart Scientific SMP1 melting point apparatus and are uncorrected. Infrared spectra were recorded on a Perkin-Elmer 1600 FTIR spectrophotometer. Electron Impact (EI) mass spectra were recorded on a Kratos double focusing magnetic sector instrument using a DS503 data system for high-resolution analysis. Fast atom bombardment (FAB) mass spectra were obtained from a Kratos MS 890 instrument. Electrospray (+ES) mass spectra were recorded using a Brucker Bio-Apex FT-ICR instrument and LCMS using a Hewlett Packard HPLC system, eluting with an acetonitrile-water gradient, in conjunction with positive and negative ion electrospray mass spectrometry.

Optical rotations were recorded on a Perkin-Elmer 241 polarimeter (using the sodium D line; 589 nm ) and $[a]_{\mathrm{D}}$ are given in units of $10^{-1} \mathrm{deg} \mathrm{dm}{ }^{2} \mathrm{~g}^{-1}$.

## (1RS,3E )-1-Hydroxy-4-phenyl-1-[1-(phenylsulfanyl)cyclo-hexyl]but-3-ene 4

A three-necked round bottomed flask, under an argon atmosphere, was charged with palladium(II) acetate $(200 \mathrm{mg}$, $870 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%$ ), triphenylphosphine ( $460 \mathrm{mg}, 1.70 \mathrm{mmol}$, $10 \mathrm{~mol} \%$ ) and acetonitrile ( $100 \mathrm{~cm}^{3}$ ). The resulting suspension was stirred to give a milky-yellow solution. Triethylamine $\left(50 \mathrm{~cm}^{3}\right)$ was added, followed by iodobenzene $\left(1.95 \mathrm{~cm}^{3}, 3.55 \mathrm{~g}\right.$, $17.4 \mathrm{mmol})$ and alkene $7(5.00 \mathrm{~g}, 19.1 \mathrm{mmol})$. After addition of the alkene the solution became claret red. The solution was heated to reflux for 6 hours, during which time the solution turned black, consistent with the generation of palladium(o). The solution was then cooled to $0{ }^{\circ} \mathrm{C}$ and hydrochloric acid $\left(2.0 \mathrm{~mol} \mathrm{dm}{ }^{-3}\right)$ was added until pH 4 was reached. The solution was extracted with diethyl ether $\left(4 \times 50 \mathrm{~cm}^{3}\right)$, washed with water $\left(50 \mathrm{~cm}^{3}\right)$ and saturated brine $\left(50 \mathrm{~cm}^{3}\right)$ and dried over anhydrous magnesium sulfate. The solvent was removed under reduced pressure to give a dark brown oil. This oil was redissolved in [light petroleum (bp 40-60 ${ }^{\circ} \mathrm{C}$ )-diethyl ether, 9:1] (30 $\mathrm{cm}^{3}$ ) and filtered through a plug of silica. This process was repeated four times to yield a pale yellow solution which was evaporated under reduced pressure to give the crude product as an orange liquid. Purification by column chromatography (silica, isohexane-diethyl ether, 9:1) gave the alcohol $4(5.20 \mathrm{~g}$, $81 \%$ ) as an oil which crystallised on standing, mp 85-89 ${ }^{\circ} \mathrm{C}$ (from hexane-ethyl acetate); $R_{\mathrm{f}}\left[\right.$ light petroleum (bp $40-60^{\circ} \mathrm{C}$ )diethyl ether, 9:1] 0.23; $v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3477(\mathrm{O}-\mathrm{H}), 3081$, 2986, 2936, 2856, $1597(\mathrm{C}=\mathrm{C})$ and $1582(\mathrm{PhS}) ; \delta_{\mathrm{H}}(400 \mathrm{MHz}$; $\mathrm{CDCl}_{3}$ ) 7.60-7.48 ( $2 \mathrm{H}, \mathrm{m}, \mathrm{PhS}$ ), 7.43-7.14 ( $8 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$ and PhS), $6.50(1 \mathrm{H}, \mathrm{d}, J 15.9 \mathrm{~Hz}, \mathrm{CHPh}), 6.32(1 \mathrm{H}, \mathrm{dt}, J 15.9$ and $6.5 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHPh}), 3.43(1 \mathrm{H}, \mathrm{dt}, J 9.9$ and $2.6 \mathrm{~Hz}, \mathrm{CH}-$ $\mathrm{OH}), 2.94^{*}(1 \mathrm{H}$, dd, $J 2.8$ and $1.0 \mathrm{~Hz}, \mathrm{OH}), 2.58(1 \mathrm{H}$, ddt, $J 14.3,6.5$ and $\left.1.1 \mathrm{~Hz}, \mathrm{C}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 2.38(1 \mathrm{H}$, dddd, $J 14.3,9.8$, 6.6 and $\left.0.7 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}}\right)$ and $2.09-1.13(10 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}(62.5$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 137.5^{-}, 137.3^{+}, 131.8^{+}(\mathrm{CH}=C \mathrm{HPh}), 130.3^{-}$, $129.1^{+}, 128.9^{+}, 128.5^{+}, 128.3^{+}(\mathrm{CH}=\mathrm{CHPh}), 127.1^{+}, 126.1^{+}$, $74.7^{+}(\mathrm{CHOH}), \quad 61.1^{-}(\mathrm{CSPh}), \quad 34.8^{-} \quad\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHPh}\right)$, $30.6^{-}, 29.9^{-}, 26.3^{-}$and $21.8^{-} ; m / z$ (EI) $338\left(7 \%, \mathrm{M}^{+}\right), 320$ (3, $\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}$ ), 211 (47), 203 (100), 191 (26, $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{SPh}^{+}$), 117 (38) and 91 (30); (Found: $\mathrm{M}^{+}, 338.1706 . \mathrm{C}_{22} \mathrm{H}_{26} \mathrm{OS}$ requires M, 338.1704).

## (3E)-1-[1-(Phenylsulfanyl)cyclohexyl]-4-phenylbut-3-en-1-one 8

Alcohol $4(1.00 \mathrm{~g}, 2.96 \mathrm{mmol})$ was added in one portion to a stirred suspension of pyridinium dichromate ${ }^{7}(1.34 \mathrm{~g}, 3.55$ mmol ) in dichloromethane ( $25 \mathrm{~cm}^{3}$ ). After stirring for 3 days, diethyl ether was added and the solution filtered through a short pad of florisil to give a crude product. Purification by column chromatography [silica, light petroleum (bp $40-60^{\circ} \mathrm{C}$ ), 9:1] gave the ketone $8(715 \mathrm{mg}, 72 \%)$ as a yellow oil; $R_{\mathrm{f}}[$ light petroleum (bp $40-60{ }^{\circ} \mathrm{C}$ ), 9:1] 0.26; $v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3029$, 2938, 2858, $1697(\mathrm{C}=\mathrm{O})$ and $1599(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}(400.1 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 7.33-7.22(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$ and PhS$), 6.52(1 \mathrm{H}, \mathrm{d}, J 16.0$
$\mathrm{Hz}, \mathrm{PhCH}=\mathrm{CH}), 6.41(1 \mathrm{H}, \mathrm{dt}, J 15.9$ and $6.8 \mathrm{~Hz}, \mathrm{PhCH}=\mathrm{CH})$, $3.71(2 \mathrm{H}, \mathrm{dd}, J 6.6$ and $0.9 \mathrm{~Hz} \mathrm{CH} \mathbf{2} \mathrm{CH}=\mathrm{CH}), 2.04-1.20(10 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 204.4^{-}(\mathrm{C}=\mathrm{O}), 137.2^{-}, 136.5^{+}$, $133.0^{+}, 130.0^{-}, 129.3^{+}, 128.8^{+}, 128.5^{+}, 127.4^{+}, 126.3^{+}, 123.7^{+}$, $61.3^{-}(\mathrm{CSPh}), 40.3^{-}\left(\mathrm{CH}_{2} \mathrm{C}=\mathrm{O}\right)$, 32.6- $\left(\mathrm{CH}_{2}\right), 25.5^{-}\left(\mathrm{CH}_{2}\right)$ and $23.1^{-}\left(\mathrm{CH}_{2}\right) ; m / z$ (EI) $336\left(17 \%, \mathrm{M}^{+}\right), 227(25), 191$ ( 100 , $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{SPh}^{+}$), 123 (12), 117 (21) and 105 (37); (Found: $\mathrm{M}^{+}$ $336.1561, \mathrm{C}_{22} \mathrm{H}_{24} \mathrm{OS}$ requires $M, 336.1548$ ).

## (1R,2R)-1,2-Dihydroxy-4-[1-(phenylsulfanyl)cyclohexyl]butan-4-one 9

Alkene $\mathbf{8}(500 \mathrm{mg}, 1.49 \mathrm{mmol}$ ) was added to a vigorously stirred solution of AD-mix- $\beta(2.08 \mathrm{~g})$ and methanesulfonamide ( $142 \mathrm{mg}, 1.49 \mathrm{mmol}$ ) in a mixture of 2-methylpropan-2-ol $\left(20 \mathrm{~cm}^{3}\right)$ and water $\left(20 \mathrm{~cm}^{3}\right)$. The reaction was stirred at room temperature until judged complete by TLC or LCMS. Sodium sulfite ( $7.50 \mathrm{~g}, 59.3 \mathrm{mmol}, 12$ eq.) was then added and stirring continued for 30 minutes. The mixture was transferred to a separating funnel and ethyl acetate ( $50 \mathrm{~cm}^{3}$ ) was added. The solution was extracted a further three times with ethyl acetate $\left(25 \mathrm{~cm}^{3}\right)$. The combined organic extracts were washed with water ( $25 \mathrm{~cm}^{3}$ ), saturated brine ( $25 \mathrm{~cm}^{3}$ ) and dried over anhydrous magnesium sulfate. The solvent was evaporated under reduced pressure to give a crude product. Purification by column chromatography (silica, hexane-ethyl acetate, 2:1) gave the diol $9(504 \mathrm{mg}, 92 \%)$ as plates, $\mathrm{mp} 102-105^{\circ} \mathrm{C}$ (from ethyl acetate); $R_{\mathrm{f}}$ (hexane-ethyl acetate, 2:1) 0.12 ; retention time $/ \mathrm{min}$ (Chiralpak AD column; hexane-ethanol, 9:1) 17.5 (99.4\%) and $20.6(0.6) ;[a]_{\mathrm{D}}-9.0\left(c .0 .26\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} ;>98 \%$ ee); $v_{\text {max }}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) /$ $\mathrm{cm}^{-1} 3597(\mathrm{O}-\mathrm{H}), 2938,2958,1686(\mathrm{C}=\mathrm{O}), 1605,1454,1389$ and 1333; $\delta_{\mathrm{H}}\left(400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.43-7.17(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$ and PhS), $4.58(1 \mathrm{H}, \mathrm{dd}, J 6.3$ and $2.1 \mathrm{~Hz}, \mathrm{PhCH})$, $4.22-4.13(1 \mathrm{H}$, $\mathrm{m}, \mathrm{CHOH}), 3.48^{*}(1 \mathrm{H}, \mathrm{d}, J 2.7 \mathrm{~Hz}, \mathrm{CHOH}), 3.14(1 \mathrm{H}, \mathrm{d}, J 2.9$ $\mathrm{Hz}, \mathrm{PhCHOH}), 2.91\left(1 \mathrm{H}, \mathrm{dd}, J 17.8\right.$ and $3.5 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{C}=\mathrm{O}$ ), $2.83\left(1 \mathrm{H}, \mathrm{dd}, J 17.8\right.$ and $\left.8.4 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{C}=\mathrm{O}\right), 1.92-1.55(6 \mathrm{H}$, $\mathrm{m})$ and $1.47-1.17(4 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 207.7^{-}$ (C=O), 140.8 $, 136.8^{+}, 130.1^{-}, 129.9^{+}, 129.2^{+}, 129.0^{+}, 128.6^{+}$, $127.3^{+}, 77.2^{+}(\mathrm{PhCHOH}), 72.9^{+}(\mathrm{CHOH}), 61.3^{-}(\mathrm{CSPh}), 39.2^{-}$ $\left(\mathrm{CH}_{2} \mathrm{C}=\mathrm{O}\right), 32.9^{-}, 25.7^{-}, 23.4^{-}$and 23.3 ${ }^{-}$; (Found: $\mathrm{MNa}^{+}$ 393.1507, $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{NaS}$ requires 393.1500 ).

## ( $1 R, 2 R, 4 R$ )-4-[1-(Phenylsulfanyl)cyclohexyl]-1-phenylbutane-1,2,4-triol 10

Glacial acetic acid ( $2.5 \mathrm{~cm}^{3}$ ) was added to a stirred suspension of tetramethylammonium triacetoxyborohydride ${ }^{8}$ ( 569 mg , $2.16 \mathrm{mmol}, 8$ eq.) in acetonitrile ( $2.0 \mathrm{~cm}^{3}$ ) and the resulting mixture was stirred for 30 minutes at room temperature to give a colourless solution. This solution was cooled to $-30^{\circ} \mathrm{C}$ and a solution of $\beta$-hydroxyketone 9 ( $100 \mathrm{mg}, 0.27 \mathrm{mmol}$ ) in acetonitrile $\left(0.5 \mathrm{~cm}^{3}\right)$ was added. The solution was then transferred to a freezer $\left(-25{ }^{\circ} \mathrm{C}\right)$ for 1 week. The reaction was quenched by addition of aqueous sodium potassium tartrate solution ( $1.0 \mathrm{~mol} \mathrm{dm}{ }^{-3}, 10 \mathrm{~cm}^{3}$ ) and the mixture allowed to warm slowly to room temperature. The reaction mixture was then diluted with dichloromethane $\left(10 \mathrm{~cm}^{3}\right)$ and washed with saturated aqueous sodium bicarbonate solution. The aqueous layer was extracted with dichloromethane $\left(4 \times 10 \mathrm{~cm}^{3}\right)$, the combined organic layers dried over anhydrous magnesium sulfate and the solvent removed under reduced pressure to give a crude product. Purification by column chromatography (silica, hexane-ethyl acetate, 2:1) gave anti,syn-triol $\mathbf{1 0}(75 \mathrm{mg}, 75 \%)$ as an oil; $R_{\mathrm{f}}$ (isohexane-ethyl acetate, 2:1) $0.13 ;[\alpha]_{\mathrm{D}}+23.6$ (c. 0.25 in $\mathrm{CH}_{2} \mathrm{Cl}_{2} ;>98 \%$ ee); $v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3564(\mathrm{O}-\mathrm{H}), 3466$ $(\mathrm{O}-\mathrm{H}), 3067,2936,2856$ and $1422 ; \delta_{\mathrm{H}}\left(400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 7.51-7.46 ( $2 \mathrm{H}, \mathrm{m}$ ), 7.43-7.31 ( $3 \mathrm{H}, \mathrm{m}$ ), 7.31-7.24 ( $3 \mathrm{H}, \mathrm{m}$ ), $7.21-7.16(2 \mathrm{H}, \mathrm{m}), 4.50(1 \mathrm{H}, \mathrm{dd}, J 7.1,3.1 \mathrm{~Hz}, \mathrm{PhCHOH})$, $3.95(1 \mathrm{H}, \mathrm{ddd}, J 14.0,6.5$ and $3.4 \mathrm{~Hz}, \mathrm{CHOH}), 3.70(1 \mathrm{H}, \mathrm{dt}$, $J 10.6$ and 2.6 Hz , PhSCCHOH), $3.29^{*}$ ( 1 H , br s, PhSCCHOH), 3.19* ( $1 \mathrm{H}, \mathrm{d}, J 6.1 \mathrm{~Hz}, \mathrm{CHOH}$ ), 3.05* ( $1 \mathrm{H}, \mathrm{d}, J 3.0 \mathrm{~Hz}$,

PhCHOH ), 2.05-1.86 ( $1 \mathrm{H}, \mathrm{m}$ ), 1.82-1.40 ( $8 \mathrm{H}, \mathrm{m}$ ) and $1.31-$ $1.06(3 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 140.6^{-}, 137.2^{+}, 129.9^{-}$, $129.2^{+}, 129.0^{+}, 128.5^{+}, 128.0^{+}, 126.9^{+}, 77.0^{+}(\mathrm{CHOH}), 74.3^{+}$ $(\mathrm{CHOH}), 71.6^{+}(\mathrm{CHOH}), 61.5^{-}(\mathrm{CSPh}), 32.1^{-}, 31.0^{-}, 29.4^{-}$, $26.2^{-}, 21.7^{-}$and $21.7^{-} ; \mathrm{m} / \mathrm{z}(+\mathrm{FAB}) 372\left(6 \%, \mathrm{M}^{+}\right), 358$ (9), 307 (11), 227 (48), 191 ( $32, \mathrm{C}_{6} \mathrm{H}_{10} \mathrm{SPh}^{+}$), 154 (100) and 111 (55); (Found: $\mathrm{MH}^{+}, 373.1830 . \mathrm{C}_{22} \mathrm{H}_{29} \mathrm{O}_{3} \mathrm{~S}$ requires $M, 373.1838$ ).

## (1R,2R,4S)-4-[1-(Phenylsulfanyl)cyclohexyl]-1-phenylbutane-1,2,4-triol 11

A $1.0 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of diethylmethoxyborane ${ }^{9}$ in tetrahydrofuran ( $140 \mu 1,0.3 \mathrm{mmol}$ ) was added to a solution of $\beta$-hydroxyketone 9 ( $50 \mathrm{mg}, 135 \mu \mathrm{~mol}$ ) in tetrahydrofuranmethanol (4:1) ( $2.5 \mathrm{~cm}^{3}$ ) at $-78^{\circ} \mathrm{C}$, under an atmosphere of argon. The mixture was stirred for 5 minutes and then sodium borohydride ( $6 \mathrm{mg}, 159 \mu \mathrm{~mol}$ ) was added and the solution allowed to stir for 8 hours. Glacial acetic acid $\left(3 \mathrm{~cm}^{3}\right)$ was added and stirring continued for a further 5 minutes. The solution was then neutralised with saturated aqueous sodium bicarbonate solution ( $30 \mathrm{~cm}^{3}$ ) and extracted with diethyl ether ( $3 \times 15 \mathrm{~cm}^{3}$ ). The organic extracts were dried over anhydrous magnesium sulfate and the solvent was removed under reduced pressure to give a crude product. This product was redissolved in methanol $\left(5 \mathrm{~cm}^{3}\right)$ and stirred for 5 minutes before removing the methanol under reduced pressure. This cycle was repeated until TLC showed no spots with $R_{f}($ diethyl ether $)>0.5$. Purification by column chromatography (silica, hexane-ethyl acetate, 2:1) gave syn,syn-triol 11 ( $37 \mathrm{mg}, 74 \%$ ) as an oil; $R_{\mathrm{f}}$ (hexane-ethyl acetate, 2:1) $0.21 ; v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3553$ (br, $\left.\mathrm{O}-\mathrm{H}\right), 2936,2858,1496$, 1476, 1448, 1389 and 1026; $[a]_{\mathrm{D}}-38.7$ (c. 0.70 in $\mathrm{CH}_{2} \mathrm{Cl}_{2} ;>98 \%$ ee); $\delta_{\mathrm{H}}\left(400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.37-7.25(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$ and PhS$)$, $4.47(1 \mathrm{H}, \mathrm{dd}, J 6.4$ and $4.0 \mathrm{~Hz}, \mathrm{PhCHOH})$, 4.16* ( $1 \mathrm{H}, \mathrm{s}, \mathrm{OH}$ ), $3.8(1 \mathrm{H}, \mathrm{ddt}, J 7.8,6.4 \mathrm{and} 1.4 \mathrm{~Hz}, \mathrm{CHOH}), 3.70^{*}(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$, $3.39(1 \mathrm{H}, \mathrm{dt}, J 10.4$ and 1.6 Hz , PhSCCHOH), 3.15* ( 1 H , d, $J 3.9 \mathrm{~Hz}, \mathrm{OH}), 1.98-1.45(9 \mathrm{H}, \mathrm{m})$ and $1.39-1.11(3 \mathrm{H}, \mathrm{m})$; $\delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 141.1^{-}, 137.2^{+}, 129.8^{-}, 129.1^{+}, 128.9^{+}$, $128.4^{+}, 128.0^{+}, 126.9^{+}, 77.8^{+}(\mathrm{CHOH}), 76.5^{+}(\mathrm{CHOH}), 75.5^{+}$ $(\mathrm{CHOH}), 60.8^{-}(\mathrm{CSPh}), 32.6^{-}, 30.0^{-}, 29.4^{-}, 26.1^{-}, 21.7^{-}$and $21.7^{-} ; m / z(+$ FAB $) 372\left(7 \%\right.$, M $\left.^{+}\right), 245$ (40), 227 (54), 191 ( 65, $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{SPh}^{+}$), 154 (21) and 111 (100); (Found: $\mathrm{M}^{+} 372.1752$. $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{~S}$ requires $M, 372.1759$ ).

## (1RS,2RS,4RS)-4-[1-(Phenylsulfanyl)cyclohexyl]-1-phenyl-butane-1,2,4-triol 10 and ( $1 R S, 2 R S, 4 S R$ )-4-[1-(Phenylsulfanyl)-cyclohexyl]-1-phenylbutane-1,2,4-triol 11

Potassium ferricyanide ( $8.76 \mathrm{~g}, 26.6 \mathrm{mmol}, 3$ eq.), potassium carbonate ( $3.68 \mathrm{~g}, 26.6 \mathrm{mmol}, 3 \mathrm{eq}$.), osmium(III) chloride ( $37 \mathrm{mg}, 124 \mu \mathrm{~mol}, 1.5 \mathrm{~mol} \%$ ), quinuclidine ( $69 \mathrm{mg}, 621 \mu \mathrm{~mol}$, $7 \mathrm{~mol} \%$ ) and methanesulfonamide ( $845 \mathrm{mg}, 8.88 \mathrm{mmol}, 1$ eq.) were placed in a round bottom flask and stirred gently. Water ( $40 \mathrm{~cm}^{3}$ ) and 2-methylpropan-2-ol ( $40 \mathrm{~cm}^{3}$ ) were added, the flask was sealed and the solution stirred vigorously. Once the solids had completely dissolved the alkene $4(3.00 \mathrm{~g}, 8.88 \mathrm{mmol})$ was added in one portion. Stirring was continued until TLC or LCMS indicated complete consumption of starting material. Sodium sulfite ( $40.2 \mathrm{~g}, 319 \mathrm{mmol}$ ) was then added in one portion and stirring continued for a further 30 minutes. The solution was transferred to a separating funnel, diluted with ethyl acetate $\left(80 \mathrm{~cm}^{3}\right)$ and the aqueous layer separated. The aqueous layer was then extracted with ethyl acetate $(3 \times 80$ $\mathrm{cm}^{3}$ ). The combined organic extracts were washed with water ( $80 \mathrm{~cm}^{3}$ ) and brine ( $80 \mathrm{~cm}^{3}$ ), dried over anhydrous magnesium sulfate and finally, the solvent was evaporated under reduced pressure to give a crude product. Analytical HPLC (isocratic 38:62 MeCN: $\mathrm{H}_{2} \mathrm{O} ; 0.1 \% \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}, 0.1 \% \mathrm{Et}_{3} \mathrm{~N}$; flow rate $1 \mathrm{~cm}^{3}$ $\mathrm{min}^{-1}$ ) indicated an anti:syn mixture of $46: 54$ (retention times: $8.02 \mathrm{~min}, 10.30 \mathrm{~min}$, respectively). Purification by column chromatography (silica, isohexane-ethyl acetate, 2:1) gave a white amorphous solid which was crystallised from chloroform
to give anti-triol $\mathbf{1 0}(1.26 \mathrm{~g}, 38 \%)$ as prisms, mp $115-117^{\circ} \mathrm{C}$ (from chloroform); $R_{\mathrm{f}}$ (isohexane-ethyl acetate, 2:1) 0.13 , spectroscopically identical to the enantiomerically enriched sample and syn-triol $11(1.61 \mathrm{~g}, 49 \%)$ as an oil; $R_{\mathrm{f}}$ (isohexaneethyl acetate, 2:1) 0.21 , spectroscopically identical to the enantiomerically enriched sample.

## (3RS,5SR,6RS)-2-Methyl-2-phenylsulfanylheptane-3,5,6-triol 12

Silyl ether 20 ( $384 \mathrm{mg}, 1.0 \mathrm{mmol}$ ) was dissolved in tetrahydrofuran ( $20 \mathrm{~cm}^{3}$ ) and tetra- $n$-butylammonium fluoride solution $\left(1.0 \mathrm{~cm}^{3}, 1.0 \mathrm{mmol}\right.$ of a $1.0 \mathrm{~mol} \mathrm{dm}^{-3}$ in tetrahydrofuran, containing $10 \%$ water) was added. The reaction was stirred at room temperature until judged complete by TLC (generally 1-2 h). Diethyl ether ( $20 \mathrm{~cm}^{3}$ ) was added, followed by water $\left(20 \mathrm{~cm}^{3}\right)$ and the mixture transferred to a separating funnel. The organic layer was separated and the aqueous layer extracted with diethyl ether $\left(2 \times 20 \mathrm{~cm}^{3}\right)$ and dichloromethane $\left(2 \times 20 \mathrm{~cm}^{3}\right)$. The combined organic layers were dried over anhydrous magnesium sulfate and the solvent removed under reduced pressure to give a crude product. Purification by column chromatography (silica, diethyl ether) gave the ${ }^{3,5}$ syn, ${ }^{5,6}$ anti-triol 12 as an oil ( $238 \mathrm{mg}, 88 \%$ ); $R_{\mathrm{f}}$ (diethyl ether) $0.21 ; v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3685(\mathrm{O}-\mathrm{H}), 3598(\mathrm{O}-\mathrm{H}), 3482(\mathrm{br}, \mathrm{O}-$ H), 2972, 2933, 2875, 1605, 1474, 1460, 1390, 1368, 1291, 1129, 1058 and $856 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.52-7.47(2 \mathrm{H}, \mathrm{m}, \mathrm{PhS})$, 7.43-7.30 ( $3 \mathrm{H}, \mathrm{m}, \mathrm{PhS}$ ), 4.02* ( $1 \mathrm{H}, \mathrm{s}, \mathrm{OH}$ ), 3.82-3.73 ( $1 \mathrm{H}, \mathrm{m}$, CHMe), $3.67(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 3.68-3.62(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}), 3.53$ ( $1 \mathrm{H}, \mathrm{d}, J 10.7 \mathrm{~Hz}, \mathrm{PhSCCHOH}) 2.24^{*}(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 1.66(1 \mathrm{H}$, br d, $\left.J 14.3 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 1.51(1 \mathrm{H}, \mathrm{dt}, J 13.9$ and 10.2 Hz , $\left.\mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}}\right), 1.47\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{\mathrm{A}}\right), 1.26\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{\mathrm{B}}\right)$ and $1.12(3 \mathrm{H}, \mathrm{d}$, $J 6.4 \mathrm{~Hz}, \mathrm{CHMe}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 137.4^{+}, 129.9^{-}(i-\mathrm{Ph})$, $129.4^{+}, 128.9^{+}, 75.8^{+}$(C-O), 75.6 ${ }^{+}$(C-O), 70.1+ (C-O), 55.2 (CSPh), $30.1^{-}\left(\mathrm{CH}_{2}\right), 25.6^{+}(\mathrm{Me}), 21.7^{+}(\mathrm{Me})$ and $17.7^{+}(\mathrm{Me})$; $m / z(+\mathrm{FAB}) 270\left(14 \%, \mathrm{M}^{+}\right), 253\left(82, \mathrm{M}^{+}-\mathrm{OH}\right), 186(100), 154$ (61) and 136 (74); (Found: $\mathrm{M}^{+}, 270.1280 . \mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{~S}$ requires $M, 270.1290$ ).

## (3SR,5SR,6RS)-2-Methyl-2-phenylsulfanylheptane-3,5,6-triol 13

By the method described for compound 12, silyl ether 21 ( $384 \mathrm{mg}, 1.0 \mathrm{mmol}$ ) and tetra- $n$-butylammonium fluoride ( $1.0 \mathrm{~cm}^{3}, 1.0 \mathrm{mmol}$ ) in tetrahydrofuran $\left(20 \mathrm{~cm}^{3}\right)$ gave a crude product as an oil. Purification by column chromatography (silica, diethyl ether) gave the ${ }^{3,5}$ anti, ${ }^{5,6}$ anti-triol $\mathbf{1 3}$ as an oil ( $248 \mathrm{mg}, 92 \%$ ); $R_{\mathrm{f}}\left(\right.$ diethyl ether) $0.13 ; v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3610$ $(\mathrm{O}-\mathrm{H}), 3489(\mathrm{O}-\mathrm{H}), 2971,2932,1474,1460,1438,1388$, 1368, 1289, 1127, 1053 and $909 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.55-$ 7.47 ( $2 \mathrm{H}, \mathrm{m}, \mathrm{PhS}$ ), 7.42-7.29 ( $3 \mathrm{H}, \mathrm{m}, \mathrm{PhS}$ ), 3.88-3.77 ( 2 H , $\mathrm{m}, \mathrm{CHOH}$ and MeCHOH ), $3.67(1 \mathrm{H}$, br d, $J 10.4 \mathrm{~Hz}$, $\mathrm{CHOH}), 3.16^{*}(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.44^{*}(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.03^{*}$ $(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 1.66-1.58\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 1.51(1 \mathrm{H}$, ddd, $J 13.2,10.5$ and $\left.2.4 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}}\right), 1.25\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{\mathrm{A}}\right), 1.20$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{\mathrm{B}}\right), 1.16(3 \mathrm{H}, \mathrm{d}, J 6.1 \mathrm{~Hz}, \mathrm{CHMe}) ; \delta_{\mathrm{C}}(100.6$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 137.4^{+}, 130.2^{-}(i-\mathrm{Ph}), 129.3^{+}, 128.8^{+}, 72.5^{+}$ $(\mathrm{C}-\mathrm{O}), 71.8^{+}(\mathrm{C}-\mathrm{O}), 70.7^{+}(\mathrm{C}-\mathrm{O}), 55.4^{-}(\mathrm{CSPh}), 31.8^{-}\left(\mathrm{CH}_{2}\right)$, $25.8^{+}(\mathrm{Me}), 22.2^{+}(\mathrm{Me})$ and $17.7^{+}(\mathrm{Me}) ; \mathrm{m} / \mathrm{z}(+\mathrm{FAB}) 270(22 \%$, $\mathrm{M}^{+}$), 253 ( $98, \mathrm{M}^{+}-\mathrm{OH}$ ), 186 (24), 151 ( $100, \mathrm{Me}_{2} \mathrm{CSPh}^{+}$) and 143 (91); (Found: $\mathrm{M}^{+}$, 270.1294. $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{~S}$ requires $M$, 270.1290).

## ( $3 R, 5 R, 6 S$ )-2-Methyl-2-phenylsulfanylheptane-3,5,6-triol 13

By the method described for compound 12, silyl ether 21 ( $73 \mathrm{mg}, 191 \mu \mathrm{~mol}$ ) and tetra- $n$-butylammonium fluoride ( $200 \mu$, $200 \mu \mathrm{~mol})$ in tetrahydrofuran $\left(5 \mathrm{~cm}^{3}\right)$ gave the ${ }^{3,5}$ anti, ${ }^{5,6}$ anti-triol $(3 R, 5 R, 6 S)-13$ as an oil ( $50 \mathrm{mg}, 97 \%$ ), spectroscopically identical to the racemic sample, retention time/min (Chiralpak AD column; hexane-ethanol, 9:1) 22.9 (100\%) and 39.4 (0); $[a]_{\mathrm{D}}$ +21.1 (c. 0.47 in $\mathrm{CH}_{2} \mathrm{Cl}_{2} ;>99 \%$ ee).
(3SR,5RS,6RS)-2-Methyl-2-phenylsulfanylheptane-3,5,6-triol 14
By the method described for compound 12, silyl ether 22 ( $384 \mathrm{mg}, 1.0 \mathrm{mmol}$ ) and tetra- $n$-butylammonium fluoride solution ( $1.0 \mathrm{~cm}^{3}, 1.0 \mathrm{mmol}$ ) in tetrahydrofuran $\left(20 \mathrm{~cm}^{3}\right)$ gave a crude product as an oil. Purification by column chromatography (silica, diethyl ether) gave the ${ }^{3,5}$ syn, ${ }^{5,6}$ syn-triol $\mathbf{1 4}$ as an oil ( $251 \mathrm{mg}, 93 \%$ ); $R_{\mathrm{f}}$ (diethyl ether) $0.24 ; v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1}$ 3480 (br, O-H), 2968, 2920, 2873, 1605, 1474, 1459, 1438, 1390, $1368,1132,1068$ and $852 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.53-7.48(2 \mathrm{H}$, $\mathrm{m}, \mathrm{PhS}$ ), $7.42-7.32$ ( $3 \mathrm{H}, \mathrm{m}, \mathrm{PhS}$ ), $4.03^{*}(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 3.69^{*}$ $(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 3.64-3.52(3 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CHOH}), 2.55(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\mathrm{OH}), 1.71-1.63\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 1.56(1 \mathrm{H}$, ddd, $J 14.2,10.4$ and $\left.9.3 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}}\right), 1.26\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{\mathrm{A}}\right), 1.20\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{\mathrm{B}}\right)$ and 1.18 ( $3 \mathrm{H}, \mathrm{d}, J 6.2 \mathrm{~Hz}, \mathrm{CHMe}$ ); $\delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 137.4^{+}$, $129.9^{-}(i-\mathrm{Ph}), 129.4^{+}, 128.9^{+}, 75.9^{+}$(C-O), $75.5^{+}(\mathrm{C}-\mathrm{O}), 70.8^{+}$ $(\mathrm{C}-\mathrm{O}), 55.1^{-}(\mathrm{CSPh}), 33.0^{-}\left(\mathrm{CH}_{2}\right), 25.5^{+}(\mathrm{Me}), 21.8^{+}(\mathrm{Me})$ and $19.4^{+}(\mathrm{Me}) ; m / z(+\mathrm{FAB}) 270\left(26 \%, \mathrm{M}^{+}\right), 253\left(88, \mathrm{M}^{+}-\mathrm{OH}\right)$, 186 (55) and 143 (100); (Found: $\mathrm{M}^{+}$, 270.1296. $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{~S}$ requires $M, 270.1290$ ).

## (3RS,5RS,6RS)-2-Methyl-2-phenylsulfanylheptane-3,5,6-triol 15

By the method described for compound 12, silyl ether 23 (384 $\mathrm{mg}, 1.0 \mathrm{mmol}$ ) and tetra- $n$-butylammonium fluoride ( $1.0 \mathrm{~cm}^{3}$, $1.0 \mathrm{mmol})$ in tetrahydrofuran $\left(20 \mathrm{~cm}^{3}\right)$ gave a crude product as an oil. Purification by column chromatography (silica, diethyl ether) gave the ${ }^{3,5}$ anti, ${ }^{5,6}$ syn-triol 15 as an oil ( $254 \mathrm{mg}, 94 \%$ ); $R_{\mathrm{f}}$ (diethyl ether) $0.13 ; v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3864(\mathrm{O}-\mathrm{H}), 3603$ (O-H), 2971, 2932, 1605, 1474, 1439, 1389, 1126, 1052 and 909; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.52-7.48(2 \mathrm{H}, \mathrm{m}, \mathrm{PhS}), 7.41-7.30(3 \mathrm{H}$, $\mathrm{m}, \mathrm{PhS}), 3.71-3.58(3 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CHOH}), 3.23^{*}(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$, $2.70^{*}(1 \mathrm{H}, \mathrm{d}, J 6.0 \mathrm{~Hz}, \mathrm{OH}), 2.38^{*}(1 \mathrm{H}, \mathrm{d}, J 3.9 \mathrm{~Hz}, \mathrm{OH}), 1.66-$ $1.53\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right.$ and $\left.\mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}}\right), 1.25\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{\mathrm{A}}\right), 1.19(3$ $\left.\mathrm{H}, \mathrm{s}, \mathrm{Me}_{\mathrm{B}}\right)$ and $1.15(3 \mathrm{H}, \mathrm{d}, J 6.1 \mathrm{~Hz}, \mathrm{CHMe}) ; \delta_{\mathrm{C}}(100.6 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 137.4^{+}, 130.2^{-}(i-\mathrm{Ph}), 129.3^{+}, 128.9^{+}, 73.7^{+}(\mathrm{C}-\mathrm{O})$, $71.9^{+}(\mathrm{C}-\mathrm{O}), 70.5^{+}(\mathrm{C}-\mathrm{O}), 55.1^{-}(\mathrm{CSPh}), 33.4^{-}\left(\mathrm{CH}_{2}\right), 25.7^{+}$ (Me), $22.3^{+}(\mathrm{Me})$ and $19.2^{+}(\mathrm{Me}) ; \mathrm{m} / \mathrm{z}(+\mathrm{FAB}) 270\left(8 \%, \mathrm{M}^{+}\right)$ 253 ( $75, \mathrm{M}^{+}-\mathrm{OH}$ ), 186 (100), 151 ( $71, \mathrm{Me}_{2} \mathrm{CSPh}^{+}$) and 143 (92); (Found: $\mathrm{M}^{+}, 270.1301 . \mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{~S}$ requires $M, 270.1290$ ).

## (3S,5S,6S)-2-Methyl-2-phenylsulfanylheptane-3,5,6-triol 15

By the method described for compound 12, silyl ether 23 ( $50 \mathrm{mg}, 130 \mu \mathrm{~mol}$ ) and tetra- $n$-butylammonium fluoride ( $130 \mu \mathrm{l}$, $130 \mu \mathrm{~mol})$ in tetrahydrofuran $\left(5 \mathrm{~cm}^{3}\right)$ gave the ${ }^{3,5}$ anti, ${ }^{5,6}$ syn-triol $(3 S, 5 S, 6 S)-15$ as an oil ( $33 \mathrm{mg}, 95 \%$ ), spectroscopically identical to the racemic sample, retention time/min (Chiralpak AD column; hexane-ethanol, 9:1) 27.1 (1.4\%) and 36.8 (98.6); $[a]_{\mathrm{D}}-7.9$ (c. 1.0 in $\mathrm{CH}_{2} \mathrm{Cl}_{2} ;>97 \%$ ee).

## (2RS)-2-(tert-Butyldimethylsilyloxy)propanal 16

A modification of a method reported by Kobayashi was used; ${ }^{16}$ diisobutylaluminium hydride ( $1.0 \mathrm{~mol} \mathrm{dm}^{-3}$ in toluene, $12 \mathrm{~cm}^{3}$, 12 mmol ) was added under argon, during a 5 minute period, to a solution of TBDMS-protected methyl lactate ( 2.18 g , $10 \mathrm{mmol})$ in diethyl ether $\left(80 \mathrm{~cm}^{3}\right)$ at $-78^{\circ} \mathrm{C}$. After stirring for 20 minutes the reaction was quenched at this temperature by the addition of methanol $\left(1 \mathrm{~cm}^{3}\right)$ followed immediately by a saturated aqueous solution of potassium sodium tartrate $\left(15 \mathrm{~cm}^{3}\right)$. Stirring was continued for 30 minutes during which time the solution was allowed to warm to room temperature. A further portion of the tartrate solution $\left(50 \mathrm{~cm}^{3}\right)$ was added and the gelatinous mixture stirred for a further 10 minutes. The mixture was then filtered under reduced pressure, through a compacted pad of Celite, into a Buchner flask. The residues were washed twice with diethyl ether ( $25 \mathrm{~cm}^{3}$ ) and filtered. The resulting biphasic mixture was transferred to a separating funnel and the organic layer separated. The aqueous layer was
extracted with diethyl ether $\left(3 \times 30 \mathrm{~cm}^{3}\right)$ and the combined extracts were dried over anhydrous sodium sulfate. The solvents were removed under reduced pressure to give a crude product as a pale yellow liquid. This residue was purified by Kugelröhr distillation to give the aldehyde $\mathbf{1 6}(771 \mathrm{mg}, 41 \%)$ as a liquid, bp $90^{\circ} \mathrm{C}$ at 20 mmHg (lit., ${ }^{16} 90^{\circ} \mathrm{C}$ at 20 mmHg ); $\delta_{\mathrm{H}}(250 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 9.62(1 \mathrm{H}, \mathrm{d}, J 1.2 \mathrm{~Hz}, \mathrm{CHO}), 4.09(1 \mathrm{H}, \mathrm{qd}, J 6.9$ and $1.2 \mathrm{~Hz}, \mathrm{CH}), 1.28(3 \mathrm{H}, \mathrm{d}, J 6.8 \mathrm{~Hz}, \mathrm{Me}), 0.92\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Si}^{\mathrm{t}} \mathrm{Bu}\right)$, $0.11\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si}_{2} e_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right)$ and $0.10\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{\mathrm{A}} M e_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}(100.6$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$ ) $204.1^{+}$(CHO), $73.8^{+}(\mathrm{CH}-\mathrm{O}), 25.7^{+}\left(\mathrm{SiCMe}_{3}\right)$, $18.5^{+}(\mathrm{Me}), 18.2^{-}\left(\mathrm{SiCMe}_{3}\right)$ and $-4.81^{+}\left(\mathrm{SiMe}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right.$ and $\mathrm{SiMe}_{\mathrm{A}} M e_{\mathrm{B}}$ ); $m / z$ (EI) $189\left(1 \%, \mathrm{MH}^{+}\right), 173$ (5), $159\left(17, \mathrm{M}^{+}-\right.$ CHO), 131 ( $100,{ }^{\mathrm{t}} \mathrm{BuMe}_{2} \mathrm{SiO}^{+}$), 103 (21), 75 (44) and 73 (58); (Found: $\mathrm{MH}^{+}, 189.1302 . \mathrm{C}_{9} \mathrm{H}_{21} \mathrm{O}_{2} \mathrm{Si}$ requires 189.1311).

## (2S)-2-(tert-Butyldimethylsilyloxy)propanal 16

By the same method used for the racemic compound, diisobutylaluminium hydride ( $1.0 \mathrm{~mol} \mathrm{dm}^{-3}$ in toluene, $12 \mathrm{~cm}^{3}, 12 \mathrm{mmol}$ ) and TBDMS-protected ( $S$ )-methyl lactate ( $97 \%$ ee) $(2.18 \mathrm{~g}$, 10 mmol ) in diethyl ether $\left(80 \mathrm{~cm}^{3}\right)$ gave the aldehyde ( $2 S$ )-16 ( $1.4 \mathrm{~g}, 74 \%$ crude yield) as a liquid, which was used without further purification.

## 2-Methyl-2-phenylsulfanylbutan-3-one 17

Alcohol 44 ( $5.0 \mathrm{~g}, 25.5 \mathrm{mmol}$ ) was added in one portion, under argon at $0{ }^{\circ} \mathrm{C}$ to a stirred solution of pyridinium chlorochromate (PCC) ( $7.86 \mathrm{~g}, 36.4 \mathrm{mmol}$ ) in dichloromethane $\left(100 \mathrm{~cm}^{3}\right)$. The solution was allowed to warm to room temperature and stirred until the reaction was judged complete by TLC. Dry diethyl ether $\left(50 \mathrm{~cm}^{3}\right)$ was added and the supernatant liquor decanted from a black gum. The insoluble residues were washed 5 times with ether $\left(50 \mathrm{~cm}^{3}\right)$ and the combined ethereal extracts were filtered through a plug of florisil, which was washed with more diethyl ether. The solvent was removed under reduced pressure to give a crude product as a pale yellow-green oil. Purification was achieved by column chromatography [silica, light petroleum (bp 40-60 ${ }^{\circ} \mathrm{C}$ )-diethyl ether, 9:1] to give the ketone $17(4.32 \mathrm{~g}, 87 \%)$ as a pale yellow oil; $R_{\mathrm{f}}($ light petroleum (bp 40-60 ${ }^{\circ} \mathrm{C}$ )-diethyl ether, 9:1) 0.27 ; $v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1}$ 3078, 3001, 2971, 2930, 2868, 1698 (C=O), 1474, 1462, 1439, 1366,1137 and $1114 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.37-7.26(5 \mathrm{H}, \mathrm{m}$, PhS ), $2.39(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$ and $1.41(6 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 206.4- (C=O), $56.5^{-}(\mathrm{CSPh})$ and $24.5^{+}(\mathrm{Me}) ; m / z(\mathrm{EI}) 194(20 \%$, $\mathrm{M}^{+}$), $151\left(100, \mathrm{Me}_{2} \mathrm{CSPh}^{+}\right)$and $109\left(29, \mathrm{PhS}^{+}\right)$; (Found: $\mathrm{M}^{+}$, 194.0765. $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{OS}$ requires $M, 194.0765$ ).
(5SR,6RS)-2-Methyl-2-phenylsulfanyl-5-hydroxy-6-(tert-butyl-dimethylsiloxy)heptan-3-one 18 and (5RS,6RS)-2-Methyl-2-phenylsulfanyl-5-hydroxy-6-(tert-butyldimethylsiloxy)heptan-3one 19
$n$-Butyllithium ( $3.8 \mathrm{~cm}^{3}$ of a $1.5 \mathrm{~mol} \mathrm{dm}^{-3}$ solution in hexane, 5.67 mmol ) was added to a solution of diisopropylamine ( $547 \mathrm{mg}, 0.80 \mathrm{~cm}^{3}, 5.67 \mathrm{mmol}$ ) in tetrahydrofuran ( $40 \mathrm{~cm}^{3}$ ), under argon, at $0^{\circ} \mathrm{C}$. After stirring for 10 minutes the solution was cooled to $-78^{\circ} \mathrm{C}$ and the ketone $17(1.00 \mathrm{~g}, 5.15 \mathrm{mmol})$ in tetrahydrofuran $\left(5 \mathrm{~cm}^{3}\right)$ added over a 10 minute period. Stirring was continued for 1 hour and the aldehyde $16(1.10 \mathrm{~g}, 5.85$ $\mathrm{mmol})$ in tetrahydrofuran $\left(5 \mathrm{~cm}^{3}\right)$ was added over a 5 minute period. The reaction was quenched after 2 hours at $-78{ }^{\circ} \mathrm{C}$, by the addition of saturated ammonium chloride solution ( $30 \mathrm{~cm}^{3}$ ), and the reaction allowed to warm to room temperature. The resulting slurry was transferred to a separating funnel and the residue washed in with water $\left(10 \mathrm{~cm}^{3}\right)$ followed by diethyl ether ( $30 \mathrm{~cm}^{3}$ ). The organic layer was separated and the aqueous layer extracted with diethyl ether $\left(3 \times 30 \mathrm{~cm}^{3}\right)$. The combined organic extracts were dried over magnesium sulfate and concentrated under reduced pressure to give a crude product as a pale yellow oil which, on standing, partly crystallised. The semi-crystalline slurry was diluted with hexane and
the crystals collected by filtration. The crystals were washed twice with cold hexane ( $5 \mathrm{~cm}^{3}$ ) to give the ketone $\mathbf{1 8}$ as prisms ( $276 \mathrm{mg}, 14 \%$ ), mp $67-68{ }^{\circ} \mathrm{C}$ (from hexane); $v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1}$ $3598(\mathrm{O}-\mathrm{H}), 2956,2931,2896,2857$ and $1697(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}(400$ MHz , CDCl ${ }_{3}$ ) 7.38-7.25 ( $5 \mathrm{H}, \mathrm{m}, \mathrm{PhS}$ ), 3.92-3.86 ( $1 \mathrm{H}, \mathrm{m}, \mathrm{CH}-$ OH ), 3.78 ( $\left.1 \mathrm{H}, \mathrm{qn}, J 6.0 \mathrm{~Hz}, \mathrm{CH}-\mathrm{OSiMe}_{2}{ }^{\mathrm{H}} \mathrm{Bu}\right), 3.11(1 \mathrm{H}$, dd, $J 17.4$ and $\left.2.7 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 2.97^{*}(1 \mathrm{H}, \mathrm{d}, J 2.8 \mathrm{~Hz}, \mathrm{OH}), 2.88$ $\left(1 \mathrm{H}, \mathrm{dd}, J 17.4\right.$ and $\left.9.3 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}}\right), 1.42(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.40$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.18(3 \mathrm{H}, \mathrm{d}, J 6.2 \mathrm{~Hz}, \mathrm{Me}), 0.90\left(\mathrm{SiCMe}_{3}\right), 0.09$ $\left(\mathrm{Si} M e_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}{ }^{\mathrm{t}} \mathrm{Bu}\right)$ and $0.09\left(\mathrm{SiMe}_{\mathrm{A}} M e_{\mathrm{B}}{ }^{\mathrm{t}} \mathrm{Bu}\right) ; \delta_{\mathrm{C}}(100.6 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 208.7^{-}(\mathrm{C}=\mathrm{O}), 136.2^{+}, 131.0^{-}(i-\mathrm{Ph}), 129.4^{+}, 128.9^{+}$, $72.6^{+}(\mathrm{C}-\mathrm{O}), 71.0^{+}(\mathrm{C}-\mathrm{O}), 56.3^{-}(\mathrm{CSPh}), 38.7^{-}\left(\mathrm{CH}_{2}\right), 25.9^{+}$ $\left(\mathrm{CMe}_{3}\right), 24.4^{+}(\mathrm{Me}), 24.3^{+}(\mathrm{Me}), 19.3^{+}(\mathrm{Me}), 18.0^{-}\left(\mathrm{CMe}_{3}\right)$, $-4.30^{+}\left(\operatorname{Si} M e_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right)$ and $-4.72^{+}\left(\operatorname{SiMe}_{\mathrm{A}} M e_{\mathrm{B}}\right) ; m / z(+\mathrm{ES}) 405$ $\left(100 \%, \mathrm{MNa}^{+}\right)$and $383\left(28, \mathrm{MH}^{+}\right)$; (Found: $\mathrm{MNa}^{+}, 405.1880$. $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{NaSSi}$ requires 405.1896). The hexane residue was concentrated under reduced pressure and the residue purified by column chromatography [silica, light petroleum (bp 40-60 ${ }^{\circ} \mathrm{C}$ )-diethyl ether, $4: 1$ ] to give a mixture of ketones 18 and 19 as an oil; $R_{f}\left[\right.$ light petroleum (bp $40-60^{\circ} \mathrm{C}$ )-diethyl ether, 4:1] 0.21. Further purification was carried out by HPLC (hexane, $0.5 \%$ ${ }^{\mathrm{P}} \mathrm{PrOH}$ ) to give a second portion of the ketone $\mathbf{1 8}$ (retention time 13.0 min ) as prisms ( $295 \mathrm{mg}, 15 \%$ ) and the ketone 19 (retention time 14.5 min ) as an oil ( $630 \mathrm{mg}, 32 \%$ ), $v_{\text {max }}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ )/ $\mathrm{cm}^{-1} 3560(\mathrm{O}-\mathrm{H}), 2956,2931,2896,2858$ and $1699(\mathrm{C}=\mathrm{O})$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.38-7.25(5 \mathrm{H}, \mathrm{m}, \mathrm{PhS}), 3.95(1 \mathrm{H}, \mathrm{td}$, $J 8.5$ and $4.1 \mathrm{~Hz}, \mathrm{C} H-\mathrm{OH}), 3.86(1 \mathrm{H}$, dt, $J 10.4$ and 6.2 Hz , $\mathrm{C} H-\mathrm{OSiMe}_{2}{ }^{\mathrm{B}} \mathrm{Bu}$ ), $2.98\left(1 \mathrm{H}\right.$, dd, $J 17.0$ and $8.8 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}$ ), $2.90\left(1 \mathrm{H}, \mathrm{dd}, J 17.0\right.$ and $\left.3.3 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}}\right), 2.84^{*}(1 \mathrm{H}, \mathrm{d}, J 4.9$ $\mathrm{Hz}, \mathrm{OH}$ ), 1.42 ( $3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$ ), 1.41 ( $3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$ ), 1.17 ( $3 \mathrm{H}, \mathrm{d}, J 6.2$ $\mathrm{Hz}, \mathrm{Me}), 0.91\left(\mathrm{SiCMe}_{3}\right), 0.10\left(\mathrm{Si}_{\mathrm{Me}}^{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}{ }^{\mathrm{t}} \mathrm{Bu}\right)$ and $0.10\left(\mathrm{SiMe}_{\mathrm{A}}{ }^{-}\right.$ $\left.M e_{\mathrm{B}}{ }^{\mathrm{t}} \mathrm{Bu}\right) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 208.1^{-}(\mathrm{C}=\mathrm{O}), 136.2^{+}, 131.1^{-}$ $(i-\mathrm{Ph}), 129.3^{+}, 128.8^{+}, 71.9^{+}(\mathrm{C}-\mathrm{O}), 70.5^{+}(\mathrm{C}-\mathrm{O}), 56.3^{-}(\mathrm{CSPh})$, $38.8^{-}\left(\mathrm{CH}_{2}\right), 25.9^{+}\left(\mathrm{CMe}_{3}\right), 24.3^{+}(\mathrm{Me} \times 2), 19.0^{+}(\mathrm{Me}), 18.1^{-}$ $\left(\mathrm{CMe}_{3}\right),-4.30^{+}\left(\mathrm{Si}_{\mathrm{A}} \mathrm{A}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right)$ and $-4.80^{+}\left(\mathrm{SiMe}_{\mathrm{A}} M e_{\mathrm{B}}\right) ; \mathrm{m} / \mathrm{z}$ $(+\mathrm{FAB}) 383\left(14 \%, \mathrm{MH}^{+}\right), 365\left(9, \mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}\right), 325(20)$, 251 ( $47, \mathrm{M}^{+}-\mathrm{OSiMe}_{2}{ }^{\mathrm{t}} \mathrm{Bu}$ ), 151 ( $100, \mathrm{Me}_{2} \mathrm{CSPh}^{+}$) and 131 (28, ${ }^{\mathrm{t}} \mathrm{BuMe}_{2} \mathrm{SiO}^{+}$); (Found: $\mathrm{MH}^{+}$, 383.2069. $\mathrm{C}_{20} \mathrm{H}_{35} \mathrm{O}_{3} \mathrm{SSi}$ requires 383.2076).

## (5R,6S)-2-Methyl-2-phenylsulfanyl-5-hydroxy-6-(tert-butyl-dimethylsiloxy)heptan-3-one 18 and (5S,6S)-2-Methyl-2-phenyl-sulfanyl-5-hydroxy-6-(tert-butyldimethylsiloxy)heptan-3- one 19

By the same method used for the racemic compounds, $n$-butyllithium ( $12.2 \mathrm{~cm}^{3}$ of a $1.4 \mathrm{~mol} \mathrm{dm}^{-3}$ solution in hexane, $15.5 \mathrm{mmol})$ and diisopropylamine ( $1.73 \mathrm{~g}, 2.41 \mathrm{~cm}^{3}, 17.1 \mathrm{mmol}$ ) in tetrahydrofuran $\left(100 \mathrm{~cm}^{3}\right)$, ketone $17(3.00 \mathrm{~g}, 15.5 \mathrm{mmol})$ in tetrahydrofuran ( $50 \mathrm{~cm}^{3}$ ) and aldehyde ( $\mathbf{2 S}$ ) - $\mathbf{1 6}(\mathrm{ca} 23 \mathrm{mmol}$.$) in$ tetrahydrofuran $\left(25 \mathrm{~cm}^{3}\right)$ gave the ketone $(5 R, 6 S)-18(768 \mathrm{mg}$, $13 \% \ddagger$ ) as an oil, spectroscopically identical to the racemic sample, $[a]_{\mathrm{D}}+30.3$ (c. 0.6 in $\mathrm{CH}_{2} \mathrm{Cl}_{2} ; 97 \%$ ee) and the ketone $(\mathbf{5 S}, 6 S)-\mathbf{1 9}\left(887 \mathrm{mg}, 15 \%{ }^{\dagger}\right)$ as an oil, spectroscopically identical to the racemic sample, $[a]_{\mathrm{D}}-18.6$ (c. 1.01 in $\mathrm{CH}_{2} \mathrm{Cl}_{2} ; 97 \%$ ee).

## (3RS,5SR,6RS)-2-Methyl-2-phenylsulfanyl-6-(tert-butyldi-methylsiloxy)heptane-3,5-diol 20

Using the method described for compound 11, ketone 18 ( $500 \mathrm{mg}, 1.31 \mathrm{mmol}$ ), diethylmethoxyborane ( $1.6 \mathrm{~cm}^{3}$, 1.6 mmol ) and sodium borohydride ( $59 \mathrm{mg}, 1.56 \mathrm{mmol}$ ) in $4: 1$ tetrahydrofuran-methanol $\left(12.5 \mathrm{~cm}^{3}\right)$ gave a crude product as an oil. Purification by column chromatography [silica, light petroleum (bp $40-60^{\circ} \mathrm{C}$ )-diethyl ether, 4:1] gave the ${ }^{3,5} \mathrm{syn}^{5,6}$ antidiol 20 as an oil ( $305 \mathrm{mg}, 61 \%$ ); $R_{\mathrm{f}} \mathrm{l}$ light petroleum (bp $40-$ $60^{\circ} \mathrm{C}$ )-diethyl ether, 4:1] $0.09 ; v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3497(\mathrm{O}-\mathrm{H})$, 2956, 2929, 2856, 1463 and 1438; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.52-$ $7.49(2 \mathrm{H}, \mathrm{m}, \mathrm{PhS}), 7.40-7.30(3 \mathrm{H}, \mathrm{m}, \mathrm{PhS}), 3.71^{*}(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$,

[^0]$3.65(1 \mathrm{H}, \mathrm{dt}, J 11.7$ and $6.0 \mathrm{~Hz}, \mathrm{C} H \mathrm{Me}), 3.61-3.52(2 \mathrm{H}, \mathrm{m}$, CHOH and CHOH$), 3.43(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 1.96(1 \mathrm{H}, \mathrm{br}$ d, $J 14.2$ $\left.\mathrm{Hz}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 1.38\left(1 \mathrm{H}, \mathrm{dt}, J 14.3\right.$ and $\left.10.2 \mathrm{~Hz} \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}}\right), 1.26(3$ $\mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.19(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.14(3 \mathrm{H}, \mathrm{d}, J 6.1 \mathrm{~Hz}, \mathrm{CH} M e), 0.86$ $(9 \mathrm{H}, \mathrm{s}, \mathrm{Si} \mathrm{Bu}), 0.06\left(\mathrm{Si}_{\mathrm{i}} \mathrm{A}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right)$ and $0.05\left(\mathrm{SiMe}_{\mathrm{A}} M e_{\mathrm{B}}\right)$; $\delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 137.5^{+}, 130.5^{-}(i-\mathrm{Ph}), 129.2^{+}, 128.8^{+}$, $76.9^{+}(\mathrm{C}-\mathrm{O}), 76.5^{+}(\mathrm{C}-\mathrm{O}), 71.6^{+}(\mathrm{C}-\mathrm{O}), 54.5^{-}(\mathrm{CSPh}), 32.6^{-}$ $\left(\mathrm{CH}_{2}\right), 25.8^{+}\left(\mathrm{CMe}_{3}\right), 25.0^{+}(\mathrm{Me}), 23.0^{+}(\mathrm{Me}), 18.8^{+}(\mathrm{Me}), 18.0^{-}$ $\left(\mathrm{CMe}_{3}\right),-4.32^{+}\left(\mathrm{Si}_{\mathrm{Me}}^{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right)$ and $-4.78^{+}\left(\mathrm{SiMe}_{\mathrm{A}} M e_{\mathrm{B}}\right) ; m / z$ $(+\mathrm{FAB}) 385\left(13 \%, \mathrm{MH}^{+}\right), 367\left(43, \mathrm{M}^{+}-\mathrm{OH}\right), 309(27), 235$ (96), 151 (73, $\mathrm{Me}_{2} \mathrm{CSPh}^{+}$) and $131\left(100,{ }^{\mathrm{t}} \mathrm{BuMe}_{2} \mathrm{SiO}^{+}\right.$); (Found: $\mathrm{MH}^{+}$, 385.2214. $\mathrm{C}_{20} \mathrm{H}_{37} \mathrm{O}_{3} \mathrm{SSi}$ requires 385.2233).

## (3SR,5SR,6RS)-2-Methyl-2-phenylsulfanyl-6-(tert-butyldi-methylsiloxy)heptane-3,5-diol 21

Using the method described for compound $\mathbf{1 0}$, ketone $\mathbf{1 8}$ ( $500 \mathrm{mg}, 1.31 \mathrm{mmol}$ ) and tetramethylammonium triacetoxyborohydride ( $4.14 \mathrm{~g}, 15.7 \mathrm{mmol}$ ) in 1:1 MeCN:AcOH ( $20 \mathrm{~cm}^{3}$ ) gave a crude product as an oil. Purification by column chromatography [silica, light petroleum (bp 40-60 ${ }^{\circ} \mathrm{C}$ )-diethyl ether, 4:1] gave the ${ }^{3,5}$ anti, ${ }^{5,6}$ anti-diol 21 as an oil ( $372 \mathrm{mg}, 74 \%$ ); $R_{\mathrm{f}}$ light petroleum ( $\mathrm{bp} 40-60{ }^{\circ} \mathrm{C}$ )-diethyl ether, 4:1] 0.07 ; $v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3568(\mathrm{O}-\mathrm{H}), 2957,2931,2886,2857,1472$, 1463 and 1438; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.54-7.49(2 \mathrm{H}, \mathrm{m}, \mathrm{PhS})$, 7.40-7.28 ( $3 \mathrm{H}, \mathrm{m}, \mathrm{PhS}$ ), 3.82-3.78 $(2 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}$ and CHMe), 3.67 ( $1 \mathrm{H}, \mathrm{d}, J 10.3 \mathrm{~Hz}, \mathrm{PhSCCHOH}), 3.01 *(1 \mathrm{H}, \mathrm{s}$, PhSCCHOH ), 2.35* ( $1 \mathrm{H}, \mathrm{d}, J 3.9 \mathrm{~Hz}, \mathrm{CHOH}$ ), $1.53(1 \mathrm{H}, \mathrm{dd}$, $J 13.6$ and $\left.8.7 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 1.44(1 \mathrm{H}$, ddd, $J 13.0,10.5$ and 2.4 $\left.\mathrm{Hz}, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}}\right), 1.24(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.20(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.09(3 \mathrm{H}, \mathrm{d}$, $J 5.9 \mathrm{~Hz}, \mathrm{CH} M e), 0.86\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Sit}^{\mathrm{B}} \mathrm{Bu}\right), 0.06\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si}_{\mathrm{Me}}^{\mathrm{A}} \mathrm{Me} \mathrm{B}_{\mathrm{B}}\right)$ and $0.02\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{\mathrm{A}} M e_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 137.5^{+}$, $130.4^{-}(i-\mathrm{Ph}), 129.2^{+}, 128.8^{+}, 72.6^{+}(\mathrm{C}-\mathrm{O}), 71.7^{+}(\mathrm{C}-\mathrm{O}), 71.4^{+}$ $(\mathrm{C}-\mathrm{O}), 55.5^{-}(\mathrm{CSPh}), 32.3^{-}\left(\mathrm{CH}_{2}\right), 25.8^{+}\left(\mathrm{CMe}_{3}\right), 25.8^{+}(\mathrm{Me})$, $22.2^{+}(\mathrm{Me}), 18.0^{-}\left(\mathrm{CMe}_{3}\right), 17.7^{+}(\mathrm{Me}),-4.30^{+}\left(\mathrm{Si} M e_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right)$ and $-4.80^{+}\left(\mathrm{SiMe}_{\mathrm{A}} M e_{\mathrm{B}}\right) ; m / z(+\mathrm{FAB}) 385\left(4 \%, \mathrm{MH}^{+}\right), 367(53)$, 309 (28), 235 (88), 151 (92, $\mathrm{Me}_{2} \mathrm{CSPh}^{+}$), 143 (83) and 131 (100, ${ }^{\mathrm{t}} \mathrm{BuMe}_{2} \mathrm{SiO}^{+}$); (Found: $\mathrm{MH}^{+}, 385.2224 . \mathrm{C}_{20} \mathrm{H}_{37} \mathrm{O}_{3} \mathrm{SSi}$ requires $M, 385.2233)$.

## ( $3 R, 5 R, 6 S$ )-2-Methyl-2-phenylsulfanyl-6-(tert-butyldimethyl-siloxy)heptane-3,5-diol 21

Using the method described for compound 10, ketone $\mathbf{1 8}$ ( $104 \mathrm{mg}, 272 \mu \mathrm{~mol}$ ) and tetramethylammonium triacetoxyborohydride ( $859 \mathrm{mg}, 3.26 \mathrm{mmol}$ ) in $1: 1 \mathrm{MeCN}: \mathrm{AcOH}\left(5.0 \mathrm{~cm}^{3}\right)$ gave the $\operatorname{diol}(\mathbf{3} R, 5 R, 6 S)-21$ as an oil $(81 \mathrm{mg}, 77 \%)$, spectroscopically identical to the racemic sample, $[a]_{\mathrm{D}}+18.4$ (c. 0.70 in $\mathrm{CH}_{2} \mathrm{Cl}_{2} ; 97 \%$ ee).

## (3SR,5RS,6RS)-2-Methyl-2-phenylsulfanyl-6-(tert-butyldi-methylsiloxy)heptane-3,5-diol 22

Using the method described for compound 11, ketone 19 (500 $\mathrm{mg}, 1.31 \mathrm{mmol}$ ), diethylmethoxyborane ( $1.6 \mathrm{~cm}^{3}$, 1.6 mmol ) and sodium borohydride ( $59 \mathrm{mg}, 1.56 \mathrm{mmol}$ ) in $4: 1$ tetrahydrofuran:methanol ( $12.5 \mathrm{~cm}^{3}$ ) gave a crude product as an oil. Purification by column chromatography [silica, light petroleum (bp $40-60^{\circ} \mathrm{C}$ )-diethyl ether, $\left.4: 1\right]$ gave the ${ }^{3,5}$ syn, ${ }^{5,6}$ syn-diol 22 as an oil ( $427 \mathrm{mg}, 85 \%$ ); $R_{\mathrm{f}}$ light petroleum (bp $40-60^{\circ} \mathrm{C}$ )-diethyl ether, 4:1] 0.14; $v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3491(\mathrm{O}-\mathrm{H})$, 2957, 2931, $2885,2858,1472,1463$ and $1438 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.52-$ 7.48 ( $2 \mathrm{H}, \mathrm{m}, \mathrm{PhS}$ ), 7.39-7.28 ( $3 \mathrm{H}, \mathrm{m}, \mathrm{PhS}$ ), 3.81* ( $1 \mathrm{H}, \mathrm{s}, \mathrm{OH}$ ), 3.73 ( $1 \mathrm{H}, \mathrm{dt}, J 11.4$ and $6.1 \mathrm{~Hz}, \mathrm{C} H \mathrm{Me}$ ), $3.66-3.55(2 \mathrm{H}, \mathrm{m}$, CHOH and CHOH$), 3.17^{*}(1 \mathrm{H}, \mathrm{d}, J 3.4 \mathrm{~Hz}, \mathrm{OH}), 1.91(1 \mathrm{H}, \mathrm{br}$ d, $\left.J 14.2 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 1.48(1 \mathrm{H}, \mathrm{dt}, J 14.1$ and 10.1 Hz , $\left.\mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}}\right), 1.26(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.20(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.17(3 \mathrm{H}, \mathrm{d}, J 6.2$ $\mathrm{Hz}, \mathrm{CH} M e), 0.86(9 \mathrm{H}, \mathrm{s}, \mathrm{SitBu}) 0.07\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si} M e_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right)$ and $0.03\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{\mathrm{A}} M e_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 137.6^{+}, 130.8^{-}$ $(i-\mathrm{Ph}), 129.0^{+}, 128.7^{+}, 76.6^{+}(\mathrm{C}-\mathrm{O}), 76.4^{+}(\mathrm{C}-\mathrm{O}), 71.1^{+}(\mathrm{C}-\mathrm{O})$, $\left.54.1^{-}(\mathrm{CSPh}), 32.7^{-}\left(\mathrm{CH}_{2}\right), 25.8^{+}(\mathrm{CMe})_{3}\right), 24.6^{+}(\mathrm{Me}), 23.7^{+}$ (Me), $19.2^{+}(\mathrm{Me}), 18.0^{-}\left(\mathrm{CMe}_{3}\right),-4.27^{+}\left(\mathrm{SiMe}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right)$ and
$-4.83^{+}\left(\mathrm{SiMe}_{\mathrm{A}} M e_{\mathrm{B}}\right) ; m / z(+\mathrm{FAB}) 385\left(2 \%, \mathrm{MH}^{+}\right), 367(23$, $\left.\mathrm{M}^{+}-\mathrm{OH}\right), 309$ (9), 235 (100), 151 (37, $\mathrm{Me}_{2} \mathrm{CSPh}^{+}$) and 131 (48, ${ }^{\mathrm{t}} \mathrm{BuMe}_{2} \mathrm{SiO}^{+}$); (Found: $\mathrm{MH}^{+}$, 385.2232. $\mathrm{C}_{20} \mathrm{H}_{37} \mathrm{O}_{3} \mathrm{SSi}$ requires 385.2233 ).

## (3RS,5RS,6RS)-2-Methyl-2-phenylsulfanyl-6-(tert-butyldi-methylsiloxy)heptane-3,5-diol 23

Using the method described for compound 10, ketone 19 ( $500 \mathrm{mg}, 1.31 \mathrm{mmol}$ ) and tetramethylammonium triacetoxyborohydride ( $4.14 \mathrm{~g}, 15.7 \mathrm{mmol}$ ) in 1:1 MeCN:AcOH ( $20 \mathrm{~cm}^{3}$ ) gave a crude product as an oil. Purification by column chromatography [silica, light petroleum (bp 40-60 ${ }^{\circ} \mathrm{C}$ )-diethyl ether, 4:1] gave the ${ }^{3,5}$ anti, ${ }^{5,5}$ syn-diol 23 as an oil ( $441 \mathrm{mg}, 88 \%$ ); $R_{\mathrm{f}}$ light petroleum (bp $40-60{ }^{\circ} \mathrm{C}$ )-diethyl ether, 4:1] 0.09 ; $v_{\text {max }}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3562(\mathrm{O}-\mathrm{H}), 2958,2931,2887,2858,1472$, 1463 and 1438; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$ ) 7.55-7.49 ( $2 \mathrm{H}, \mathrm{m}, \mathrm{PhS}$ ), 7.39-7.28 ( $3 \mathrm{H}, \mathrm{m}, \mathrm{PhS}$ ), 3.73-3.60 ( $3 \mathrm{H}, \mathrm{m}, \mathrm{CHMe}, \mathrm{CHOH}$ and PhSCCHOH ), 3.07* ( $1 \mathrm{H}, \mathrm{s}, \mathrm{PhSCCHOH}$ ), 2.29* ( $1 \mathrm{H}, \mathrm{d}, J 5.8$ $\mathrm{Hz}, \mathrm{OH}), 1.59\left(1 \mathrm{H}, \mathrm{dd}, J 13.6\right.$ and $\left.9.4 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 1.45(1 \mathrm{H}$, dd, $J$ 13.2, 10.6 and $\left.2.3 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}}\right), 1.23(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.19$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.16(3 \mathrm{H}, \mathrm{d}, J 6.0 \mathrm{~Hz}, \mathrm{CHMe}), 0.87\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Si}^{\mathrm{t}} \mathrm{Bu}\right)$, $0.07\left(\mathrm{SiMe}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right)$ and $0.06\left(\mathrm{SiMe}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $137.5^{+}, 130.6^{-}(i-\mathrm{Ph}), 129.1^{+}, 128.8^{+}, 73.0^{+}(\mathrm{C}-\mathrm{O}), 72.0^{+}(\mathrm{C}-\mathrm{O})$, $71.8^{+}(\mathrm{C}-\mathrm{O}), 55.1^{-}(\mathrm{CSPh}), 34.9^{-}\left(\mathrm{CH}_{2}\right), 25.8^{+}\left(\mathrm{CMe}{ }_{3}\right), 25.6^{+}$ (Me), $22.7^{+}(\mathrm{Me}), 20.3^{+}(\mathrm{Me}), 18.0^{-}\left(\mathrm{CMe}_{3}\right),-4.15^{+}\left(\mathrm{SiMe}_{\mathrm{A}}{ }^{-}\right.$ $\left.\mathrm{Me}_{\mathrm{B}}\right)$ and $-4.83^{+}\left(\mathrm{SiMe}_{\mathrm{A}} M e_{\mathrm{B}}\right) ; m / z(+\mathrm{FAB}) 385\left(9 \%, \mathrm{MH}^{+}\right)$, 367 (66, M ${ }^{+}$- OH), 309 (24), 235 (84), 151 (72, $\mathrm{Me}_{2} \mathrm{CSPh}^{+}$), 143 (100) and 131 ( $89,{ }^{\mathrm{t}} \mathrm{BuMe}_{2} \mathrm{SiO}^{+}$); (Found: $\mathrm{MH}^{+}, 385.2230$. $\mathrm{C}_{20} \mathrm{H}_{37} \mathrm{O}_{3} \mathrm{SSi}$ requires 385.2233).

## (3S,5S,6S)-2-Methyl-2-phenylsulfanyl-6-(tert-butyldimethyl-siloxy)heptane-3,5-diol 23

Using the method described for compound 10, ketone 19 ( $140 \mathrm{mg}, 366 \mu \mathrm{~mol}$ ) and tetramethylammonium triacetoxyborohydride ( $1.16 \mathrm{~g}, 4.39 \mathrm{mmol}$ ) in $1: 1 \mathrm{MeCN}: \mathrm{AcOH}\left(5.0 \mathrm{~cm}^{3}\right)$ gave the $\operatorname{diol}(\mathbf{3 S}, 5 S, 6 S)-23$ as an oil ( $109 \mathrm{mg}, 77 \%$ ), spectroscopically identical to the racemic sample, $[a]_{\mathrm{D}}-16.5$ (c. 1.60 in $\mathrm{CH}_{2} \mathrm{Cl}_{2} ; 97 \%$ ee).

## ( $1 R S, 2 S R, 4 S R$ )-1-[5,5-Dimethyl-4-(phenylsulfanyl)tetrahydro-furan-2-yl]ethanol 24

Toluene- $p$-sulfonic acid ( $1.3 \mathrm{mg}, 6.9 \mu \mathrm{~mol}$ ) was added to a stirred solution of syn,anti-triol $12(37 \mathrm{mg}, 0.137 \mathrm{mmol})$ in dichloromethane $\left(2 \mathrm{~cm}^{3}\right)$. The reaction temperature was raised to $50^{\circ} \mathrm{C}$ to initiate reflux and heating continued for 48 hours. The reaction mixture was cooled to room temperature and filtered through a short plug of silica, eluting with dichloromethane, to give the ${ }^{2,4}$ syn-tetrahydrofuran $24(31 \mathrm{mg}, 89 \%)$ as an oil; $R_{\mathrm{f}}\left[\right.$ light petroleum (bp $40-60{ }^{\circ} \mathrm{C}$ )-diethyl ether, 1:1] $0.23 ; v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3561(\mathrm{O}-\mathrm{H}), 3063,2988,2935,2855$, 1481, 1447, 1439, 1195, 1141, 1085 and 909; $\delta_{\mathrm{H}}(400 \mathrm{MHz}$; $\mathrm{CDCl}_{3}$ ) 7.47-7.42 ( $2 \mathrm{H}, \mathrm{m}, \mathrm{PhS}$ ), 7.34-7.22 (3 H, m, PhS), 3.97$3.89(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}-\mathrm{O}), 3.86(1 \mathrm{H}, \mathrm{qd}, J 5.7$ and $3.4 \mathrm{~Hz}, \mathrm{CHMe})$, $3.48(1 \mathrm{H}, \mathrm{dd}, J 10.7$ and $6.8 \mathrm{~Hz}, \mathrm{CHSPh}), 2.23(1 \mathrm{H}, \mathrm{dt}, J 12.6$ and $\left.6.1 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 2.12-2.06\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}}\right.$ and OH$), 1.31$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{\mathrm{A}}\right), 1.30\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{\mathrm{B}}\right)$ and $1.10(3 \mathrm{H}, \mathrm{d}, J 6.5 \mathrm{~Hz}$, $\mathrm{CHMe}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 135.5^{-}(i-\mathrm{PhS}), 131.7^{+}, 129.0^{+}$, $127.1^{+}, 82.6^{-}(\mathrm{C}-\mathrm{O}), 80.4^{+}(\mathrm{CH}-\mathrm{O}), 67.1^{+}$(CH-O), $56.1^{+}$, $33.0^{-}\left(\mathrm{CH}_{2}\right), 28.0^{+}(\mathrm{Me}), 25.2^{+}(\mathrm{Me})$ and $17.9^{+}(\mathrm{Me}) ; m / z(\mathrm{EI})$ $252\left(57 \%, \mathrm{M}^{+}\right), 207$ (81, $\left.\mathrm{M}^{+}-\mathrm{MeCHOH}\right), 194$ (411, $\mathrm{M}^{+}-$ $\mathrm{Me}_{2} \mathrm{CO}$ ), 179 (11), 163 (45), 150 (61) and $110\left(100, \mathrm{PhSH}^{+}\right)$; (Found: $\mathrm{M}^{+}, 252.1191 . \mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{~S}$ requires $M, 252.1184$ ).

## (1RS,2SR,4RS)-1-[5,5-Dimethyl-4-(phenylsulfanyl)tetrahydro-furan-2-yl]ethanol 25

By the method described for compound 24, toluene- $p$-sulfonic acid ( $1.8 \mathrm{mg}, 9.5 \mu \mathrm{~mol}$ ) and a solution of anti,anti-triol 13 ( $50 \mathrm{mg}, 185 \mu \mathrm{~mol}$ ) in dichloromethane ( $2.5 \mathrm{~cm}^{3}$ ) gave the ${ }^{2,4}$ anti-
tetrahydrofuran $\mathbf{2 5}$ ( $35 \mathrm{mg}, 75 \%$ ) after 72 hours as an oil; $R_{\mathrm{f}}$ light petroleum (bp 40-60 ${ }^{\circ} \mathrm{C}$ )-diethyl ether, 1:1] $0.25 ; v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) /$ $\mathrm{cm}^{-1} 3589$ (O-H), 2995, 2963, 2928, 2855, 1604, 1584, 1480, $1460,1381,1369,1091,1046$ and 1014; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 7.45-7.38 ( $2 \mathrm{H}, \mathrm{m}, \mathrm{PhS}$ ), 7.33-7.19 ( $3 \mathrm{H}, \mathrm{m}, \mathrm{PhS}$ ), 3.97 ( 1 H , ddd, $J 8.4,5.3$ and $3.0 \mathrm{~Hz}, \mathrm{CH}-\mathrm{O}), 3.90(1 \mathrm{H}, \mathrm{qd}, 6.5$ and $3.2 \mathrm{~Hz}, \mathrm{CHOH}), 3.32(1 \mathrm{H}, \mathrm{t}, J 8.9 \mathrm{~Hz}, \mathrm{CHSPh}), 2.48(1 \mathrm{H}, \mathrm{ddd}$, $J$ 13.1, 8.8 and $\left.5.3 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 2.01^{*}(1 \mathrm{H}$, br s, OH$), 1.96$ $\left(1 \mathrm{H}, \mathrm{dt}, J 13.0\right.$ and $\left.8.8 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}}\right), 1.29\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{\mathrm{A}}\right), 1.28$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{\mathrm{B}}\right)$ and $1.11(3 \mathrm{H}, \mathrm{d}, J 6.5 \mathrm{~Hz}, \mathrm{CHMe})$; $\delta_{\mathrm{C}}(100.6 \mathrm{MHz}$; $\mathrm{CDCl}_{3}$ ) $135.7^{-}$( $i-\mathrm{PhS}$ ), $131.0^{+}, 129.0^{+}, 126.8^{+}$, $83.1^{-}(\mathrm{C}-\mathrm{O})$, $79.3^{+}(\mathrm{CH}-\mathrm{O}), 67.9^{+}(\mathrm{CH}-\mathrm{O}), 55.1^{+}(\mathrm{CSPh}), 33.0^{-}\left(\mathrm{CH}_{2}\right)$, $27.4^{+}(\mathrm{Me}), 22.0^{+}(\mathrm{Me})$ and $17.8^{+}(\mathrm{Me}) ; m / z$ (EI) $252(50 \%$, $\mathrm{M}^{+}$), 207 ( $47, \mathrm{M}^{+}-\mathrm{MeCHOH}$ ), 194 ( $46, \mathrm{M}^{+}-\mathrm{Me}_{2} \mathrm{CO}$ ), 163 (29), 150 (78), 136 (76) and $110\left(100, \mathrm{PhSH}^{+}\right.$); (Found: $\mathrm{M}^{+}$, 252.1188. $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{~S}$ requires $M, 252.1184$ ).
(1RS,2RS,4RS)-1-[5,5-Dimethyl-4-(phenylsulfanyl)tetrahydro-furan-2-yl]ethanol 26
By the method described for compound 24, toluene- $p$-sulfonic acid ( $1.3 \mathrm{mg}, 6.9 \mu \mathrm{~mol}$ ) and a solution of syn,syn-triol $\mathbf{1 4}$ ( $37 \mathrm{mg}, 137 \mu \mathrm{~mol}$ ) in dichloromethane ( $2.5 \mathrm{~cm}^{3}$ ) gave the ${ }^{2,4}$ syntetrahydrofuran 26 ( $32 \mathrm{mg}, 93 \%$ ) after 72 hours as an oil; $R_{\mathrm{f}}$ light petroleum (bp $40-60{ }^{\circ} \mathrm{C}$ )-diethyl ether, 1:1] 0.21 ; $v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3577(\mathrm{O}-\mathrm{H}), 3056,2974,2927,2855,1583$, 1480, 1461, 1380, 1368, 1096, 1049 and 896; $\delta_{\mathrm{H}}(400 \mathrm{MHz}$; $\mathrm{CDCl}_{3}$ ) $7.47-7.40(2 \mathrm{H}, \mathrm{m}, \mathrm{PhS}), 7.34-7.21(3 \mathrm{H}, \mathrm{m}, \mathrm{PhS}), 3.71$ $(1 \mathrm{H}, \mathrm{dt}, J 9.5$ and $6.7 \mathrm{~Hz}, \mathrm{CH}-\mathrm{O}), 3.61(1 \mathrm{H}$, qnd, $J 6.5$ and 3.1 $\mathrm{Hz}, \mathrm{CHOH}), 3.47(1 \mathrm{H}, \mathrm{dd}, J 11.0$ and $7.0 \mathrm{~Hz}, \mathrm{CHSPh}), 2.46^{*}$ $(1 \mathrm{H}, \mathrm{d}, J 3.1 \mathrm{~Hz}, \mathrm{OH}), 2.38\left(1 \mathrm{H}, \mathrm{dt}, 12.9\right.$ and $\left.6.7 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right)$, $1.82\left(1 \mathrm{H}, \mathrm{ddd}, J 12.6,11.0\right.$ and $\left.9.5 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}}\right), 1.30(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{Me}_{\mathrm{A}}\right), 1.26\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{\mathrm{B}}\right)$ and $1.10(3 \mathrm{H}, \mathrm{d}, J 6.3 \mathrm{~Hz}, \mathrm{CHMe})$; $\delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 135.4^{-}(i-\mathrm{PhS}), 131.5^{+}, 129.1^{+}, 127.1^{+}$, $82.9^{-}$(C-O), $81.2^{+}$(C-O), 71.6 ${ }^{+}(\mathrm{C}-\mathrm{O}), 56.2^{+}$(CSPh), 36.7 ${ }^{-}$, 29.7 ${ }^{-}$, $27.9^{+}(\mathrm{Me}), 25.2^{+}(\mathrm{Me})$, and $18.7^{+}(\mathrm{Me}) ; m / z(\mathrm{EI}) 252$ ( $58 \%, \mathrm{M}^{+}$), 220 (100), 207 ( $29, \mathrm{M}^{+}-\mathrm{MeCHOH}$ ), 194 ( $35, \mathrm{M}^{+}$ $-\mathrm{Me}_{2} \mathrm{CO}$ ), 163 (24), 150 (56) and 110 (62, $\mathrm{PhSH}^{+}$); (Found: $\mathrm{M}^{+}, 252.1183 . \mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{~S}$ requires $M, 252.1184$ ).

## (1RS,2RS,4SR)-1-[5,5-Dimethyl-4-(phenylsulfanyl)tetrahydro-furan-2-yl]ethanol 27

By the method described for compound 24, toluene- $p$-sulfonic acid ( $1.8 \mathrm{mg}, 9.5 \mu \mathrm{~mol}$ ) and a solution of anti,syn-triol 15 ( $50 \mathrm{mg}, 185 \mu \mathrm{~mol}$ ) in dichloromethane ( $2.5 \mathrm{~cm}^{3}$ ) gave the ${ }^{2,4}$ anti-tetrahydrofuran 27 ( $45 \mathrm{mg}, 96 \%$ ) after 72 hours as an oil; $R_{\mathrm{f}}$ light petroleum (bp $40-60{ }^{\circ} \mathrm{C}$ )-diethyl ether, 1:1] 0.25 ; $v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3574(\mathrm{O}-\mathrm{H}), 2962,2928,1583,1480,1459$, 1382, 1370, 1090, 1042 and $1025 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.43-$ 7.38 ( $2 \mathrm{H}, \mathrm{m}, \mathrm{PhS}$ ), $7.33-7.21(3 \mathrm{H}, \mathrm{m}, \mathrm{PhS})$, $3.84(1 \mathrm{H}$, ddd, $J 8.4,6.1$ and $5.1 \mathrm{~Hz}, \mathrm{CH}-\mathrm{O}), 3.56(1 \mathrm{H}$, qnd, $J 6.3$ and 4.7 Hz , $\mathrm{CHOH}), 3.36(1 \mathrm{H}, \mathrm{t}, J 8.8 \mathrm{~Hz}, \mathrm{CHSPh}), 2.28^{*}(1 \mathrm{H}, \mathrm{d}, J 4.6 \mathrm{~Hz}$, $\mathrm{OH}), 2.22\left(1 \mathrm{H}\right.$, ddd, $J 13.2,8.4$ and $\left.4.9 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 2.13(1 \mathrm{H}$, $\mathrm{dt}, J 13.1$ and $\left.8.7 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}}\right), 1.28\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{\mathrm{A}}\right), 1.27(3 \mathrm{H}, \mathrm{s}$, $\mathrm{Me}_{\mathrm{B}}$ ) and $1.14(3 \mathrm{H}, \mathrm{d}, J 6.3 \mathrm{~Hz}, \mathrm{CHMe}) ; \delta_{\mathrm{C}}(100.6 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 135.6^{-}(i-\mathrm{PhS}), 131.2^{+}, 129.1^{+}, 126.9^{+}, 83.5^{-}(\mathrm{C}-\mathrm{O})$, $79.7^{+}(\mathrm{CH}-\mathrm{O}), 70.7^{+}(\mathrm{CH}-\mathrm{O}), 55.0^{+}(\mathrm{CSPh}), 36.4^{-}\left(\mathrm{CH}_{2}\right)$, $27.8^{+}(\mathrm{Me}), 22.4^{+}(\mathrm{Me}), 19.2^{+}(\mathrm{Me}) ; m / z(\mathrm{EI}) 252\left(70 \%, \mathrm{M}^{+}\right)$, 207 ( $72, \mathrm{M}^{+}-\mathrm{MeCHOH}$ ), 194 (63, $\mathrm{M}^{+}-\mathrm{Me}_{2} \mathrm{CO}$ ), 179 (20), $163(45), 150(100), 135(64)$ and $110\left(93, \mathrm{PhSH}^{+}\right)$; (Found: $\mathrm{M}^{+}$, 252.1181. $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{~S}$ requires $M, 252.1184$ ).

## (1 RS,2RS,4SR )-1-Phenyl(4-phenylsulfanyl-1-oxaspiro[4.5]dec-2-yl)methanol 29

By the method described for compound 24, toluene-p-sulfonic acid ( $1.2 \mathrm{mg}, 6.3 \mu \mathrm{~mol}$ ) and a solution of the anti,syn-triol 10 $(50 \mathrm{mg}, 134 \mu \mathrm{~mol})$ in dichloromethane $\left(2.5 \mathrm{~cm}^{3}\right)$ gave the ${ }^{2,4}$ antitetrahydrofuran 29 ( $44 \mathrm{mg}, 93 \%$ ) after 24 hours as an oil; $R_{\mathrm{f}}$ light petroleum ( $\mathrm{bp} 40-60{ }^{\circ} \mathrm{C}$ )-diethyl ether, 4:1] 0.14 ;
$v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3560(\mathrm{O}-\mathrm{H}), 2928,2855,1584,1480,1455$, 1377, 1196 and $909 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.36-7.14(10 \mathrm{H}, \mathrm{m}$, Ph and PhS ), $4.45(1 \mathrm{H}, \mathrm{d}, J 7.0 \mathrm{~Hz}, \mathrm{PhCHOH}), 4.21(1 \mathrm{H}, \mathrm{dt}, J$ 7.4 and $5.8 \mathrm{~Hz}, \mathrm{CH}-\mathrm{O}), 3.32(1 \mathrm{H}, \mathrm{t}, 7.7 \mathrm{~Hz}, \mathrm{PhSCH}), 2.26$ ( 1 H , ddd, 13.4, 7.7 and $5.7 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}$ ), $1.94(1 \mathrm{H}, \mathrm{dt}, 13.3$ and $\left.7.7 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}}\right)$ and $1.83-1.15(10 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}(100.6 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 140.4^{-}, 135.8^{-}, 130.7^{+}, 129.0^{+}, 128.4^{+}, 128.0^{+}, 127.2^{+}$, $126.6^{+}, 84.9^{-}(\mathrm{C}-\mathrm{O}), 79.5^{+}(\mathrm{CH}-\mathrm{O}), 77.6^{+}(\mathrm{CH}-\mathrm{O}), 54.8^{+}(\mathrm{C}-$ SPh), 37.2 ${ }^{-}$, $35.7^{-}, 31.5^{-}, 29.7^{-}, 25.6^{-}, 23.3^{-}$and $22.3^{-} ; \mathrm{m} / \mathrm{z}$ (EI) $354\left(7 \%, \mathrm{M}^{+}\right), 247$ ( $\left.100, \mathrm{M}^{+}-\mathrm{PhCHOH}\right), 203$ (24), 137 (94), 119 (43) and 84 (65); (Found: $\mathrm{M}^{+}, 354.1654 . \mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{~S}$ requires $M, 354.1653$ ).

## (1RS,2RS,4RS)-1-Phenyl-(4-phenylsulfanyl-1-oxaspiro[4.5]dec-2-yl)methanol 30

By the method described for compound 24, but without heating at reflux, toluene- $p$-sulfonic acid ( $0.6 \mathrm{mg}, 3.2 \mu \mathrm{~mol}$ ) and a solution of syn,syn-triol $11(25 \mathrm{mg}, 67.1 \mu \mathrm{~mol})$ in dichloromethane ( $2.5 \mathrm{~cm}^{3}$ ) gave the ${ }^{2,4}$ syn-tetrahydrofuran $30(19 \mathrm{mg}$, $81 \%$ ) after 3 days as an oil; $R_{\mathrm{f}} \mathrm{llight}$ petroleum (bp $40-60{ }^{\circ} \mathrm{C}$ )diethyl ether, 4:1] 0.14; $v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3567(\mathrm{O}-\mathrm{H}), 3063$, 2986, 2936, 2859, 1584, 1480, 1449, 1439, 1388, 1194, 1145 , 1085 and $909 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.46-7.17(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$ and PhS), $4.53(1 \mathrm{H}, \mathrm{dd}, J 7.8$ and $1.7 \mathrm{~Hz}, \mathrm{PhCHOH}), 4.00(1 \mathrm{H}, \mathrm{br}$ $\mathrm{q}, J 8.0 \mathrm{~Hz}, \mathrm{CH}-\mathrm{O}), 3.37(1 \mathrm{H}, \mathrm{dd}, J 9.7$ and $7.1 \mathrm{~Hz}, \mathrm{PhSCH})$, 3.12* $(1 \mathrm{H}, \mathrm{d}, J 1.9 \mathrm{~Hz}, \mathrm{OH}), 2.16(1 \mathrm{H}, \mathrm{dt}, J 13.2$ and 6.9 Hz , $\left.\mathrm{C} H_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 1.90\left(1 \mathrm{H}, \mathrm{dt}, J 12.9\right.$ and $\left.9.5 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}}\right), 1.79-1.48$ $(9 \mathrm{H}, \mathrm{m})$ and 1.30-1.17 ( $1 \mathrm{H}, \mathrm{m}$ ); $\delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 140.1^{-}$, $135.6^{-}, 131.2^{+}, 129.1^{+}, 128.4^{+}, 127.9^{+}, 127.0^{+}, 126.9^{+}, 125.9^{+}$, $84.4^{-}$(C-O), $80.8^{+}, 78.7^{+}, 56.2^{+}$(CHSPh), 36.4 ${ }^{-}$, 36.3- $25.6^{-}$, $23.1^{-}$and $22.4^{-} ; m / z$ (EI) $354\left(11 \%, \mathrm{M}^{+}\right), 247\left(100 \mathrm{M}^{+}-\right.$ $\mathrm{PhCHOH}), 203$ (26), 137 (85) and 110 (21, $\mathrm{PhSH}^{+}$); (Found: $\mathrm{M}^{+}, 354.1652 . \mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{~S}$ requires $\left.M, 354.1653\right)$.
(2RS,3SR,5RS)-2-Methyl-5-(1-Methyl-1-phenylsulfanylethyl)-tetrahydrofuran-3-yl ethanoate 36 and (2RS,3SR,5SR)-2,6,6-Trimethyl-5-phenylsulfanyltetrahydropyran-3-yl ethanoate 37
Syn,anti-triol 12 ( $41 \mathrm{mg}, 152 \mu \mathrm{~mol}$ ) was dissolved in dry dichloromethane $\left(2.0 \mathrm{~cm}^{3}\right)$ and pyridinium toluene- $p$-sulfonate $(10 \mathrm{mg}, 38.0 \mu \mathrm{~mol})$ was added. The reaction vessel was sealed with a septum and trimethyl orthoacetate ( $20 \mu \mathrm{l}, 19.2 \mathrm{mg}$, $160 \mu \mathrm{~mol}$ ) was injected in one portion. The reaction was stirred at room temperature until TLC indicated that the starting material had been completely consumed (approximately 24 hours). The reaction mixture was then filtered through a short plug of silica, eluting with dichloromethane, and the solvent was evaporated under reduced pressure to give a crude product. This product was redissolved in dichloromethane ( $2.5 \mathrm{~cm}^{3}$ ) and toluene- $p$-sulfonic acid ( $2.0 \mathrm{mg}, 10 \mu \mathrm{~mol}$ ) was added. The reaction temperature was raised to $35^{\circ} \mathrm{C}$ and allowed to stand at this temperature for 4 days. The reaction mixture was cooled to room temperature and filtered through a short plug of silica, again eluting with dichloromethane. The solvent was evaporated under reduced pressure to give a crude product ( 37 mg , $83 \%$ ) which consisted of a $26: 74$ mixture of THF 36 and THP 37. These compounds were not successfully separated and therefore not fully characterised. ${ }^{1} \mathrm{H}$ NMR spectroscopy on the crude mixture showed three characteristic peaks: $\delta_{\mathrm{H}} 5.00(1 \mathrm{H}$, $\mathrm{td}, J 9.6$ and $\left.5.0 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{ax}} \mathrm{OAc}, \mathrm{THP}\right), 4.83(1 \mathrm{H}, \mathrm{dt}, J 5.1$ and $2.4 \mathrm{~Hz}, \mathrm{CHOAc}, \mathrm{THF})$ and $3.27\left(1 \mathrm{H}, \mathrm{t}, J 4.0 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{eq}} \mathrm{SPh}\right)$.

## (2RS,3SR,5RS)-2,6,6-Trimethyl-5-phenylsulfanyltetrahydro-pyran-3-yl ethanoate 38

By the method described for compounds 36 and 37, anti,antitriol 13 ( $55 \mathrm{mg}, 203 \mu \mathrm{~mol}$ ), pyridinium toluene- $p$-sulfonate $(12.8 \mathrm{mg}, 50.8 \mu \mathrm{~mol})$ and trimethyl orthoacetate ( $27 \mu \mathrm{l}, 25.6 \mathrm{mg}$, $214 \mu \mathrm{~mol}$ ) in dry dichloromethane ( $2.5 \mathrm{~cm}^{3}$ ) gave a crude product after 24 h which was treated with toluene- $p$-sulfonic
acid ( $3.8 \mathrm{mg}, 20.3 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%$ ) in dichloromethane $\left(2.5 \mathrm{~cm}^{3}\right.$ ) at $35^{\circ} \mathrm{C}$ for 24 hours to give a second product. Purification by chromatography [silica, light petroleum (bp 40-60 ${ }^{\circ} \mathrm{C}$ )-diethyl ether, $4: 1$ ] gave the ${ }^{2,3}$ anti, ${ }^{3,5}$ syn-tetrahydropyran 38 ( $53 \mathrm{mg}, 88 \%$ ) as an oil; $R_{\mathrm{f}}\left[\right.$ light petroleum (bp 40-60 ${ }^{\circ} \mathrm{C}$ )-diethyl ether, $\left.4: 1\right]$ 0.32; $v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 2999,2922,2855,1732(\mathrm{C}=\mathrm{O}), 1583$, $1464,1369,1230,1145,1106,1053$ and $910 ; \delta_{\mathrm{H}}(400 \mathrm{MHz} ;$ $\mathrm{CDCl}_{3}$ ) 7.42-7.37 (2 H, m, PhS), 7.31-7.19 (3 H, m, PhS), 4.40 ( 1 H , ddd, $J 11.2,9.8$ and $\left.4.9 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{ax}} \mathrm{OAc}\right), 3.64(1 \mathrm{H}$, dq, $J 9.9$ and $6.1 \mathrm{~Hz}, \mathrm{C} H \mathrm{Me}), 3.10(1 \mathrm{H}$, dd, $J 13.1$ and 4.3 $\left.\mathrm{Hz}, \mathrm{CH}_{\mathrm{ax}} \mathrm{SPh}\right), 2.31\left(1 \mathrm{H}, \mathrm{dt}, J 12.8\right.$ and $\left.4.6 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{ax}} H_{\mathrm{eq}}\right), 2.01$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}), 1.76\left(1 \mathrm{H}\right.$, td, $J 12.9$ and $\left.11.4 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{ax}} \mathrm{H}_{\mathrm{eq}}\right), 1.40$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{\mathrm{A}}\right), 1.31\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{\mathrm{B}}\right)$ and $1.10(3 \mathrm{H}, \mathrm{d}, J 6.1 \mathrm{~Hz}$, $\mathrm{CHMe}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 170.1^{-}(\mathrm{C}=\mathrm{O}), 134.9^{-}(i-\mathrm{PhS})$, $132.0^{+}, 129.1^{+}, 127.3^{+}, 75.5^{-}(\mathrm{C}-\mathrm{O}), 73.5^{+}, 68.0^{+}, 53.5^{+}$ (CHSPh), 33.9 ${ }^{-}$, 29.7 ${ }^{-}$, 29.1+ (Ac), 21.1+ (Me), 18.5+ (Me) and $18.4^{+}(\mathrm{Me}) ; m / z(\mathrm{EI}) 294\left(23 \%, \mathrm{M}^{+}\right), 152(13)$ and 136 (100); (Found: $\mathrm{M}^{+}, 294.1291 . \mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{~S}$ requires $M, 294.1290$ ).

## (2RS,3RS,5RS)-2,6,6-Trimethyl-5-phenylsulfanyltetrahydro-pyran-3-yl ethanoate 39

By the method described for compounds 36 and 37, syn,syntriol $14(50 \mathrm{mg}, 185 \mu \mathrm{~mol})$, pyridinium toluene- $p$-sulfonate $(11.6 \mathrm{mg}, 46.2 \mu \mathrm{~mol})$ and trimethyl orthoacetate $(25 \mu \mathrm{l}, 23.3 \mathrm{mg}$, $194 \mu \mathrm{~mol})$ in dry dichloromethane ( $2.5 \mathrm{~cm}^{3}$ ) gave a crude product after 24 h which was treated with toluene- $p$-sulfonic acid $(3.5 \mathrm{mg}, 18.5 \mu \mathrm{~mol})$ in dichloromethane $\left(2.0 \mathrm{~cm}^{3}\right)$ at $35^{\circ} \mathrm{C}$ for 72 hours to give a second product. Purification by chromatography [silica, light petroleum (bp 40-60 ${ }^{\circ} \mathrm{C}$ )-diethyl ether, 4:1] gave the ${ }^{2,3}$ synn, $^{3,5}$ anti-tetrahydropyran $39(46 \mathrm{mg}, 85 \%)$ as an oil; $R_{\mathrm{f}}$ light petroleum (bp $40-60^{\circ} \mathrm{C}$ )-diethyl ether, $\left.4: 1\right] 0.22$; $v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 2999,2852,1732(\mathrm{C}=\mathrm{O}), 1583,1463,1379$, $1242,1182,1099,1067,1024$ and $971 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 7.39-7.34 ( $2 \mathrm{H}, \mathrm{m}, \mathrm{PhS}$ ), 7.32-7.18 (3 H, m, PhS), 4.84-4.81 $\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{\mathrm{eq}} \mathrm{OAc}\right), 3.85\left(1 \mathrm{H}, \mathrm{qd}, J 6.4\right.$ and $\left.1.4 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{ax}} \mathrm{Me}\right)$, $3.33\left(1 \mathrm{H}\right.$, dd, $J 13.0$ and $\left.4.3 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{ax}} \mathrm{SPh}\right), 2.14(1 \mathrm{H}$, ddd, $J 14.8,4.2$ and $3.2 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{ax}} H_{\mathrm{eq}}$ ), $2.08(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}), 1.97$ (1 H , ddd, $J 14.8,13.1$ and $\left.3.0 \mathrm{~Hz}, \mathrm{C}_{\mathrm{ax}} \mathrm{H}_{\mathrm{eq}}\right), 1.43\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{\mathrm{A}}\right)$, $1.30\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{\mathrm{B}}\right)$ and $1.09(3 \mathrm{H}, \mathrm{d}, J 6.4 \mathrm{~Hz}, \mathrm{CHMe}) ; \delta_{\mathrm{C}}(100.6$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 169.6^{-}(\mathrm{C}=\mathrm{O}), 134.1^{-}(i-\mathrm{PhS}), 130.3^{+}, 128.0^{+}$, $125.9^{+}, 74.8^{-}(\mathrm{C}-\mathrm{O}), 69.6^{+}(\mathrm{CHOAc}), 65.7^{+}(\mathrm{CHMe}), 48.4^{+}$ $(\mathrm{CHSPh}), 32.6^{-}\left(\mathrm{CH}_{2}\right), 20.3^{+}(\mathrm{Ac}), 17.2^{+}(\mathrm{Me})$ and $16.7^{+}(\mathrm{Me})$; $m / z(E I) 294\left(31 \%, \mathrm{M}^{+}\right), 234\left(8, \mathrm{M}^{+}-\mathrm{AcOH}\right), 152$ (12) and 136 (100); (Found: $\mathrm{M}^{+}, 294.1300 . \mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{~S}$ requires $M$, 294.1290).

## (1RS,3SR,5SR,6SR )-1,6-Dimethyl-3-[1-methyl-1-(phenyl-sulfanyl)ethyl]-2,7,8-trioxabicyclo[3.2.1]octane 41

Anti,syn-triol 15 ( $70 \mathrm{mg}, 259 \mu \mathrm{~mol}$ ) was dissolved in dry dichloromethane $\left(3.0 \mathrm{~cm}^{3}\right)$ and pyridinium toluene- $p$-sulfonate $(16.3 \mathrm{mg}, 64.7 \mu \mathrm{~mol})$ was added. The reaction vessel was sealed with a septum and trimethyl orthoacetate ( $35 \mu \mathrm{l}, 32.6 \mathrm{mg}$, $272 \mu \mathrm{~mol}$ ) was injected in one portion. The reaction was stirred at room temperature for 5 minutes and the reaction mixture was then filtered through a short plug of silica, eluting with dichloromethane. The solvent was evaporated under reduced pressure to give the orthoester 41 as an oil ( $73 \mathrm{mg}, 96 \%$ ); $R_{\mathrm{f}}[$ light petroleum (bp $40-60^{\circ} \mathrm{C}$ )-diethyl ether, $\left.4: 1\right] 0.33 ; v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ / $\mathrm{cm}^{-1} 3047$, 2964, 2928, 2870, 1473, 1400, 1282, 1249, 1143, 1121, 1092, 1070, 949 and 909; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.59-7.51$ ( $2 \mathrm{H}, \mathrm{m}, \mathrm{PhS}$ ), 7.36-7.26 (3 H, m, PhS), $4.26(1 \mathrm{H}, \mathrm{dd}, J 3.4$ and $\left.2.1 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{eq}} \mathrm{O}\right), 4.20(1 \mathrm{H}, \mathrm{q}, J 6.2 \mathrm{~Hz}, \mathrm{C} H \mathrm{Me}), 3.89(1 \mathrm{H}, \mathrm{dd}$, $J 11.6$ and $\left.4.0 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{ax}} \mathrm{O}\right), 2.11(1 \mathrm{H}$, ddd, $J 13.4,11.6$ and 3.5 $\left.\mathrm{Hz}, \mathrm{CH}_{\mathrm{ax}} \mathrm{H}_{\mathrm{eq}}\right), 1.71\left(1 \mathrm{H}\right.$, ddd, $J 13.4,4.0$ and $\left.2.1 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{ax}} H_{\mathrm{eq}}\right)$, $1.56\left(3 \mathrm{H}, \mathrm{s}, \mathrm{MeCO}_{3}\right), 1.22(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.21(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$ and $1.20(3 \mathrm{H}, \mathrm{d}, J 5.4 \mathrm{~Hz}, \mathrm{CHMe}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 137.7^{+}$, $131.5^{-}(i-\mathrm{PhS}), 128.8^{+}, 128.4^{+}, 119.2^{-}\left(\mathrm{CO}_{3}\right), 77.7^{+}(\mathrm{CH}-\mathrm{O})$, $76.1^{+}(\mathrm{CH}-\mathrm{O}), 73.6^{+}(\mathrm{CH}-\mathrm{O}), 50.8^{-}(\mathrm{CSPh}), 29.2^{-}\left(\mathrm{CH}_{2}\right)$, $25.4^{+}(\mathrm{Me}), 23.9^{+}(\mathrm{Me}), 22.7^{+}(\mathrm{Me})$ and $20.3^{+}(\mathrm{Me}) ; \mathrm{m} / \mathrm{z}$ (EI)
$294\left(20 \%, \mathrm{M}^{+}\right), 220$ (47), 143 (100, $\left.\mathrm{M}^{+}-\mathrm{Me}_{2} \mathrm{CSPh}\right), 125$ (34) and $109\left(18, \mathrm{PhS}^{+}\right)$; (Found: $\mathrm{M}^{+}, 294.1290 . \mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{~S}$ requires $M, 294.1290)$.

## (1RS,3SR,5SR,6SR )-1-Methyl-3-(1-cyclohexyl-1-phenylsulf-anyl)-6-phenyl-2,7,8-trioxabicyclo[3.2.1]octane 42

By the method described for compound 41, anti,syn-triol 10 ( $45 \mathrm{mg}, 121 \mu \mathrm{~mol}$ ), pyridinium toluene- $p$-sulfonate $(7.6 \mathrm{mg}$, $30.3 \mu \mathrm{~mol})$ and trimethyl orthoacetate $(16 \mu \mathrm{l}, 15.3 \mathrm{mg}, 127$ $\mu \mathrm{mol}$ ) in dry dichloromethane ( $2.5 \mathrm{~cm}^{3}$ ) gave the orthoester 42 ( $44 \mathrm{mg}, 92 \%$ ) as an oil after 5 minutes; $R_{\mathrm{f}}$ light petroleum (bp 40-60 ${ }^{\circ} \mathrm{C}$ )-diethyl ether, 4:1] $0.43 ; v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3046$, 2986, 2935, 2857, 1474, 1448, 1400, 1292, 1152, 1121, 1093, 991, 909 and $870 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.67-7.19(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$ and $\mathrm{PhS}), 4.98(1 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}), 4.56\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CH}_{\mathrm{eq}} \mathrm{O}\right), 4.04(1 \mathrm{H}$, dd, $J 11.5$ and $\left.3.9 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{ax}} \mathrm{O}\right), 2.43(1 \mathrm{H}, \mathrm{td}, J 11.7$ and 3.4 Hz , $\left.\mathrm{C}_{\mathrm{ax}} \mathrm{H}_{\mathrm{eq}} \mathrm{CH}_{\mathrm{ax}} \mathrm{O}\right), 2.17-1.13(11 \mathrm{H}, \mathrm{m})$ and $1.67(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$; $\delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 141.1^{-}, 137.4^{+}, 137.3^{+}, 131.8^{-}, 128.6^{+}$, $128.5^{+}, 127.9^{+}, 125.8^{+}, 120.0^{-}\left(\mathrm{CO}_{3}\right), 81.3^{+}(\mathrm{CH}-\mathrm{O}), 79.7^{+}$ $(\mathrm{CH}-\mathrm{O}), 73.8^{+}(\mathrm{CH}-\mathrm{O}), 56.0^{-}(\mathrm{CSPh}), 31.2^{-}, 30.6^{-}, 29.0^{-}$, $26.0^{-}, 22.1^{+}(\mathrm{Me})$ and $21.7^{-} ; \mathrm{m} / \mathrm{z}(\mathrm{EI}) 396\left(6 \%, \mathrm{M}^{+}\right), 227$ (62), $205\left(76, \mathrm{M}^{+}-\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{SPh}\right.$ ) and 145 (100); (Found: $\mathrm{M}^{+}, 396.1757$. $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{~S}$ requires $M, 396.1759$ ).

## (2RS,3RS,5RS )-2-Phenyl-5-phenylsulfanyl-1-oxaspiro[5.5]-undecan-3-yl ethanoate 43

By the method described for compounds 36 and 37, syn,syntriol 11 ( $38 \mathrm{mg}, 102 \mu \mathrm{~mol}$ ), pyridinium toluene- $p$-sulfonate $(6.4 \mathrm{mg}, 25.5 \mu \mathrm{~mol})$ and trimethyl orthoacetate $(14 \mu \mathrm{l}, 12.9 \mathrm{mg}$, $107 \mu \mathrm{~mol})$ in dry dichloromethane $\left(2.5 \mathrm{~cm}^{3}\right)$ gave a crude product after 24 h which was treated with toluene- $p$-sulfonic acid ( $1.9 \mathrm{mg}, 10 \mu \mathrm{~mol}$ ) in dichloromethane $\left(2.5 \mathrm{~cm}^{3}\right)$ at $35^{\circ} \mathrm{C}$ for 72 hours to give a second product. Purification by chromatography [silica, light petroleum (bp 40-60 ${ }^{\circ} \mathrm{C}$ )-diethyl ether, 4:1] gave the ${ }^{2,3}$ syn, ${ }^{3,5}$ anti-tetrahydropyran $43(36 \mathrm{mg}, 89 \%)$ as an oil; $R_{\mathrm{f}}\left[\right.$ light petroleum ( $\mathrm{bp} 40-60{ }^{\circ} \mathrm{C}$ )-diethyl ether, 4:1] 0.31; $v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3031,2936,2858,1735(\mathrm{C}=\mathrm{O}), 1583,1478$, $1449,1374,1240,1064,1036$ and $992 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 7.42-7.35 ( $2 \mathrm{H}, \mathrm{m}, \mathrm{PhS}$ ), 7.34-7.18 (3 H, m, PhS), 5.31-5.24 (1 $\left.\mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{eq}} \mathrm{OAc}\right), 4.77\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{\mathrm{ax}} \mathrm{Ph}\right), 3.36(1 \mathrm{H}, \mathrm{dd}, J 11.6$ and $\left.5.9 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{ax}} \mathrm{SPh}\right), 2.32-2.12\left(3 \mathrm{H}, \mathrm{m}\right.$, includes $\mathrm{C}_{\mathrm{ax}} \mathrm{H}_{\mathrm{eq}}$ and $\left.\mathrm{CH}_{\mathrm{ax}} H_{\mathrm{eq}}\right), 1.96-1.16(9 \mathrm{H}, \mathrm{m})$ and $1.79(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac})$; $\delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 170.6^{-}(\mathrm{C}=\mathrm{O}), 139.2^{-}, 135.9^{-}, 131.5^{+}$, $129.4^{+}, 128.4^{+}, 127.6^{+}, 127.3^{+}, 126.3^{+}, 77.2^{-}(\mathrm{C}-\mathrm{O}), 71.3^{+}$ (CHPh), $70.5^{+}$(CHOAc), $50.4^{+}$(CHSPh), 37.3-, $33.3^{-}, 26.3^{-}$, $24.7^{-}, 21.7^{-}, 21.2^{+}$(Ac) and $21.2^{-} ; m / z$ (EI) $396\left(14 \%, \mathrm{M}^{+}\right), 238$ (23), 162 (21), 136 (100) and 120 (45); (Found: $\mathrm{M}^{+}, 396.1763$. $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{~S}$ requires $M, 396.1759$ ).

## (2RS)-3-Methyl-3-phenylsulfanylbutan-2-ol 44

Methyllithium ( $18 \mathrm{~cm}^{3}$ of a $1.6 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ solution in diethyl ether, 28.8 mmol ) was added dropwise to a stirred solution of 2-methyl-2-phenylsulfanylpropionaldehyde ( $5.0 \mathrm{~g}, 27.8 \mathrm{mmol}$ ) in diethyl ether $\left(100 \mathrm{~cm}^{3}\right)$, at $0^{\circ} \mathrm{C}$, under an argon atmosphere. The mixture was allowed to warm to room temperature and stirring continued for 1 hour. The reaction was then cooled to $0{ }^{\circ} \mathrm{C}$ and saturated ammonium chloride solution added ( $70 \mathrm{~cm}^{3}$ ). The mixture was transferred to a separating funnel and the organic layer separated. The aqueous layer was extracted twice with diethyl ether $\left(30 \mathrm{~cm}^{3}\right)$ and the combined organic extracts washed with water $\left(30 \mathrm{~cm}^{3}\right)$ and saturated brine solution ( $30 \mathrm{~cm}^{3}$ ). The ether solution was dried over anhydrous magnesium sulfate and the solvent evaporated under reduced pressure to give the crude product as a pale yellow oil. The product was purified by column chromatography (silica, light petroleum (bp $40-60^{\circ} \mathrm{C}$ )-diethyl ether, 9:1] to give alcohol 44 $\left(5.40 \mathrm{~g}, 99^{\%}\right.$ ) as an oil; $R_{\mathrm{f}}\left[\right.$ light petroleum (bp 40-60 ${ }^{\circ} \mathrm{C}$ )-diethyl ether, 9:1] 0.10; $v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3501(\mathrm{br}, \mathrm{O}-\mathrm{H}), 3075,2971$,

2934, 2873, 1474, 1461, 1387, 1366 and 1283; $\delta_{\mathrm{H}}(400 \mathrm{MHz}$; $\mathrm{CDCl}_{3}$ ) $7.53-7.50(2 \mathrm{H}, \mathrm{m}, \mathrm{PhS}), 7.38-7.30(3 \mathrm{H}, \mathrm{m}, \mathrm{PhS}), 3.53$ ( $1 \mathrm{H}, \mathrm{qd}, J 6.4$ and $2.2 \mathrm{~Hz}, \mathrm{CHOH}$ ), 2.94* $(1 \mathrm{H}$, br d, $J 1.4 \mathrm{~Hz}$, $\mathrm{OH}), 1.24(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.18(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$ and $1.12(3 \mathrm{H}, \mathrm{d}, J 6.3$ $\mathrm{Hz}, \mathrm{Me}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 137.5^{+}$( $\mathrm{m}-\mathrm{PhS}$ ), $130.4^{-}$ ( $i$-PhS), $129.2^{+}(p-\mathrm{PhS}), 128.8^{+}(o-\mathrm{PhS}), 70.7^{+}(\mathrm{CH}-\mathrm{OH}), 55.7^{-}$ (CSPh), 26.1+ (Me), 21.1+ (Me) and 16.1+ (Me); m/z (EI) 196 $\left(22 \%, \mathrm{M}^{+}\right), 151\left(100, \mathrm{Me}_{2} \mathrm{CSPh}^{+}\right), 131$ (17), 119 (11), 110 (84, $\mathrm{PhSH}^{+}$) and 109 (32, $\mathrm{PhS}^{+}$); (Found: $\mathrm{M}^{+}$, 196.0923. $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{OS}$ requires $M, 196.0922$ ).

## Acknowledgements

We thank the EPSRC and AstraZeneca for a grant to DH and Dr J. E. Davies and Dr N. Feeder for the single crystal X-ray diffraction analysis.

## Notes and References

1 (a) L. Caggiano, D. J. Fox, D. House, Z. Jones, F. Kerr and S. Warren, J. Chem. Soc., Perkin Trans. 1, 2002 (DOI: 10.1039/ b207556a); (b) L. Caggiano, D. J. Fox, D. House, Z. Jones, F. Kerr and S. Warren, J. Chem. Soc., Perkin Trans. 1, 2002 (DOI: 10.1039/ b207557g).
2 D. House, F. Kerr and S. Warren, Chem. Commun., 2000, 1783.
3 H. C. Kolb, M. S. VanNieuwenhze and K. B. Sharpless, Chem. Rev., 1994, 94, 2483.
4 C. R. Hauser and C. R. Hance, J. Am. Chem. Soc., 1952, 74, 5091.

5 (a) K. Tamao, K. Sumitani and M. Kumada, J. Am. Chem. Soc., 1972, 94, 4374; (b) K. Tamao, K. Sumitani, Y. Kiso, M. Zembayashi, A. Fujioka, S.-i. Kodama, I. Nakajima, A. Minato and M. Kumada, Bull. Chem. Soc. Jpn., 1976, 49, 1958.
6 I. Fleming, J. Dunoguès and R. Smithers, Organic Reactions, 1989, 37, 57.
7 E. J. Corey and G. Schmidt, Tetrahedron Lett., 1979, 399.
8 D. A. Evans, K. T. Chapman and E. M. Carreira, J. Am. Chem. Soc., 1988, 110, 3560.
9 K.-M. Chen, G. E. Hardtmann, K. Prasad, O. Repič and M. J. Shapiro, Tetrahedron Lett., 1987, 28, 155.

10 (a) M. Chérest, H. Felkin and N. Prudent, Tetrahedron Lett., 1968, 2199; (b) N. T. Anh, Top. Curr. Chem., 1979, 146.
11 E. P. Lodge and C. H. Heathcock, J. Am. Chem. Soc., 1987, 109, 3353.

12 By 'rearranged' we mean a product that has been formed as a result of a [1,2]-PhS migration. Conversely an 'unrearranged' product is one in which the phenylsulfanyl group remains bound to the same carbon as it was before the cyclisation.
13 P. Lavallée, R. Ruel, L. Grenier and M. Bissonnette, Tetrahedron Lett., 1986, 27, 679.
14 Calculations were performed using MOPAC software with a PM3 basis set.
15 By 'downhill' we refer to the phenylsulfanyl group undergoing a [1,2] shift from a more substituted to a less substituted carbon atom. Sulfanyl groups generally only move 'downhill'; in some cases they may undergo 'flat' migration, i.e. from one secondary centre to another. For more details see: D. J. Fox, D. House and S. Warren, Angew. Chem., Int. Ed. Engl., 2002, 41, 2462.
16 Y. Ito, Y. Kobayashi, T. Kawabata, M. Takase and S. Terashima, Tetrahedron, 1989, 45, 5767.


[^0]:    $\ddagger$ Only part of the crude material was separated by HPLC

